预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

未知环境中移动机器人动态路径规划 I.Introduction Dynamicpathplanningisanessentialtaskformobilerobotsoperatinginunknownenvironments.Itinvolvescalculatinganoptimalpaththattherobotshouldtakebetweentwopointswhileavoidingobstaclesintheenvironment.Inadynamicenvironment,obstaclescanmoveandchangeposition,forcingtherobottoconstantlyupdateitspathplanning.Thismakesdynamicpathplanningachallengingtask,astherobotmustquicklyreacttochangesintheenvironmentwhileensuringthatitreachesitsdestinationsafely. II.LiteratureReview Variousalgorithmshavebeenproposedfordynamicpathplanning,eachwithitsadvantagesanddisadvantages.Themostwidelyusedmethodsarepotentialfieldmethods,probabilisticmethods,andartificialneuralnetworks. Potentialfieldmethodsuseavirtualpotentialfieldtoguidetherobotalongapaththatavoidsobstaclesintheenvironment.Therobotisattractedtothegoalandrepelledbytheobstacles,andthealgorithmcalculatestheoptimalpathbasedonthegradientofthepotentialfield.However,thismethodcanresultintherobotgettingstuckinlocalminimaorbeingunabletomoveiftheobstaclesaretooclosetogether. Probabilisticmethods,suchasMonteCarloLocalization,useprobabilitytomodeltheenvironmentandthelikelihoodoftherobotbeingatacertainposition.Thismethodiseffectiveindealingwithdynamicenvironmentsasitcanquicklyupdatetherobot'slocalizationbasedonsensorreadings.However,itcanbecomputationallyexpensiveandmaynotbesuitableforreal-timeapplications. Artificialneuralnetworksuseamulti-layerednetworkofnodestogenerateanoptimalpathfortherobot.Theinputtothenetworkisthesensordatafromtherobot,andtheoutputisthedesiredtrajectory.Thismethodcanlearnfrompastexperienceandadapttochangingenvironmentsquickly.However,thismethodcanbecomplexandrequiresignificanttrainingdata,whichmaynotbeavailableinallsituations. III.ProposedMethod Inthisresearch,weproposeahybridalgorithmthatcombinesthestrengthsofthepotentialfieldmethodandartificialneuralnetworks.Thealgorithminvolvesusingapotentialfieldtonavigatetherobotthroughtheenvironmenttowardsitsgoalwhileusinganartificialneuralnetworktogenerat