预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

某些特征p域上的低维完备李代数 Introduction Inmathematics,Liealgebrasplayacrucialroleinthestudyofsymmetriesandtransformations.Theyprovideaframeworkforunderstandingthestructureandbehaviorofawiderangeofmathematicalobjects,includinggroups,manifolds,anddifferentialequations.ThetheoryofLiealgebrashasapplicationsinvariousfieldssuchasphysics,engineering,andcomputerscience. Inthispaper,wewillfocusonlow-dimensionalcompleteLiealgebrasoveracertainfieldp.Wewillexplorethepropertiesandstructureofthesealgebras,aswellastheirimplicationsforthebroadertheoryofLiealgebras. DefinitionofLow-DimensionalCompleteLieAlgebras ALiealgebraisavectorspaceequippedwithabilinearoperationcalledtheLiebracket,whichsatisfiescertainproperties.ItissaidtobecompleteifeveryelementofthevectorspacecanbewrittenasalinearcombinationofLiebracketsofelementsofthealgebra. Alow-dimensionalLiealgebrareferstoanalgebrawithasmallnumberofdimensions.Inthispaper,wewillfocusontwoparticularcases:two-dimensionalandthree-dimensionalLiealgebras. Two-DimensionalCompleteLieAlgebras Letusconsideratwo-dimensionalvectorspaceoverthefieldp,denotedasV.Wecanchooseabasis{e₁,e₂}forthisvectorspace.InorderfortheLiealgebratobecomplete,weneedtodefinetheLiebracket[e₁,e₁],[e₁,e₂],and[e₂,e₂].Thisgivesusthreepossibilities: 1)If[e₁,e₁]=λe₁and[e₁,e₂]=μe₁+νe₂,then[e₂,e₂]=βe₁+γe₂.TheLiealgebraissaidtobeabelianifλ=μ=ν=β=γ=0. 2)If[e₁,e₁]=λe₂and[e₁,e₂]=μe₂,then[e₂,e₂]=βe₁+γe₂.ThiscasecorrespondstoasolvableLiealgebra. 3)If[e₁,e₁]=λe₁+μe₂and[e₁,e₂]=νe₁+ρe₂,then[e₂,e₂]=βe₁+γe₂.Thiscasecorrespondstoanon-solvableLiealgebra. Three-DimensionalCompleteLieAlgebras Similarly,wecanconsiderathree-dimensionalvectorspaceVoverthefieldp.Wechooseabasis{e₁,e₂,e₃}forV,anddefinetheLiebracket[eᵢ,eⱼ]foralli,j=1,2,3. Thereareseveralpossiblecasesforthree-dimensionalcompleteLiealgebras: 1)If[e₁,e₁]=λ₁e₁+λ₂e₂and[e₁,e₂]=μ₁e₁+μ₂e₂,then[e₁,e₃]=ν₁e₁+ν₂e₂+ν₃e₃.TheLiealgebraissolvable. 2)If[e₁,e₁]=λe₁+μe₂+νe₃and[e₁,e₂]=ρe₁+σe₂+τe₃,then[e₁,e₃]=αe₁+βe₂+γe₃and[e₂,e₃]=δe₁+εe₂+ηe₃.Thiscasecorrespondstoanon