预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于图像法的拱桥结构损伤识别为题目,写不少于1200的论文 Abstract Thestructuraldamageidentificationofarchbridgebasedonimagemethodhasbecomeanimportanttopicinthefieldofbridgeengineering.Theidentificationofstructuraldamageisofgreatsignificanceforthesafetyandmaintenanceofarchbridge.Inthispaper,methodsforstructuraldamageidentificationofarchbridgebasedonimagemethodaresystematicallyreviewed,includingimageacquisition,featureextractionanddamageidentificationalgorithm.Then,thefeasibilityandeffectivenessofimage-baseddamageidentificationmethodsareverifiedbysimulationexamples,andthefutureresearchdirectionisprospected. Keywords:archbridge;structuraldamageidentification;imagemethod;featureextraction;damageidentificationalgorithm 1.Introduction Archbridgeisatypeofbridgestructurewithlargespanandhighbearingcapacity,whichiswidelyusedintransportationengineering.Withtheincreasingofservicelifeofarchbridge,theagingofmaterials,corrosion,overloadandotherfactorsmaycausestructuraldamage,whichwillaffectthesafetyanddurabilityofthebridge.Therefore,itisnecessarytocarryoutregularmaintenanceandinspectionofthearchbridge,andtoaccuratelyidentifyandevaluatethestructuraldamageofthebridge.Inrecentyears,image-basedstructuraldamageidentificationmethodhasbeenwidelyusedinthefieldofcivilengineeringduetoitsadvantagesofnon-contactmeasurement,highaccuracyandfastspeed. 2.Imageacquisition Theacquisitionofhigh-qualitybridgeimageisthefirststepofimage-basedstructuraldamageidentification.Atpresent,therearevariousmethodsforbridgeimageacquisition,includingaerialphotography,ground-basedsurvey,unmannedaerialvehicle(UAV)photographyandremotesensingtechnology.Theimageacquisitionmethodshouldbedeterminedaccordingtotheactualsituationofthebridge,suchasthespan,bridgedeckheightandaccessibility. 3.Featureextraction Featureextractionistheprocessofextractingtheeffectivefeaturesfromthebridgeimage,whichcanreflectthedamagecharacteristicsofthestructure.Commonfeatureextractionmethodsincludegray-levelco-occurrencematrix(GLCM),Gaborwavelettransform,localbinarypattern