预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

无参考图像模糊度估计 Abstract Imageblurestimationisanimportantproblemincomputervisionandimageprocessing.Itplaysacriticalroleinawiderangeofapplications,includingimagerestoration,deblurring,andobjectrecognition.Inthispaper,wereviewvarioustechniquesthathavebeenproposedforblurestimation,includingtraditionalmethodsbasedonimagestatisticsandmachinelearning-basedmethods.Wealsodiscusstheirstrengthsandweaknessesandoffersomeinsightsintothefuturedirectionsoftheresearchinthistopic. Introduction Imageblurisawell-knownphenomenonthatfrequentlyoccursinreal-worldimagesduetovariousfactors,includingthecamera'smovement,lensaberrations,andobjectmotion.Thisblurcansignificantlydegradetheimage'squalityandmakeitchallengingtointerpretoranalyze.Therefore,estimatingandreducingtheblurinimagesisanimportantprobleminimageprocessingandcomputervision. Blurestimationisanactiveresearcharea,withmanymethodsproposedtotacklethisproblem.Thesemethodscanbebroadlydividedintotwocategories:traditionalmethodsbasedonimagestatisticsandmachinelearning-basedmethods.Traditionalmethodsestimatetheblurparametersbyanalyzingtheimage'scharacteristics,suchasthesharpnessofedges,thedistributionofpixelintensities,andthefrequencyspectrum.Ontheotherhand,machinelearning-basedmethodsuseasetoftrainingimagestolearnamodelthatcanaccuratelyestimatetheblurparameters. Inthispaper,wereviewvarioustechniquesforestimatingimageblur,startingwithtraditionalmethods,followedbymachinelearning-basedmethods.Wealsodiscusstheirstrengthsandweaknessesandhighlightsomepromisingfuturedirectionsforresearchinthisarea. TraditionalMethods Traditionalmethodsforblurestimationrelyonanalyzingtheimage'scharacteristicstoestimatetheblurparameters.Thesemethodscanbefurtherdividedintotwogroups:image-domainmethodsandfrequency-domainmethods. Image-domainMethods Image-domainmethodsarebasedonanalyzingtheimage'scharacteristicsinthespatialdomain.Thesemethodstypicallyuseimagefeatures,suchasthesharpnessofedgesandthedistributionofpixelintensities,toestimatetheblurparameters.Someofthecommon