预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

脱硫吸收塔废水坑浆液溢流原因分析及控制对策 某燃煤电厂脱硫系统中,#1汲取塔消失废水坑大量浆液溢流、石膏含水量过高和除雾器堵塞等现象。通过分析,发觉主要缘由为汲取塔负荷较大,导致空塔流速过快、亚硫酸钙氧化不充分、汲取塔内浆液密度过高、脱硫汲取浆液雾化颗粒量缺乏;结合其脱硫系统的超低排放改造,进展了增设喷淋层和改用单向双头式喷嘴、增设不锈钢托盘、设置增效环、改用三级屋脊高效除雾器、增加备用旋流子等设备改扩建。同时,提出了掌握汲取塔pH值和密度、添加脱硫增效剂、增加氧化风机运行台数和提高除雾器清洗频率等改良措施。由于环保要求日益严格,燃煤电厂烟气脱硫工作引起了广泛关注。石灰石石膏湿法脱硫(WFGD)工艺由于具有脱硫剂原料廉价易得、脱硫效率高、技术成熟、运行牢靠等优点,已成为我国燃煤电厂烟气脱硫的首选工艺。在WFGD系统中,由于现场实际运行状态与设计工况的偏差,往往会产生各种不正常现象和问题。本文对某电厂脱硫汲取塔废水坑浆液溢流和除雾器堵塞等现象发生的缘由,以及运行操作需要留意的问题进展了分析与探讨。1脱硫系统概述某电厂脱硫系统采纳WFGD工艺。此法将破裂研磨的粉状石灰石与水混合,搅拌制成脱硫汲取浆液;其在汲取塔内与烟气充分接触混合,浆液中的CaCO3与烟气中的SO2以及鼓入的氧化空气进展化学反响,生成脱硫石膏CaSO4.2H2O;石膏经脱水装置脱水后回收,SO2由此被脱除。详细化学反响原理如下:该电厂#1机组为350MW的国产超临界燃煤发电机组,一炉一塔,未设置烟气换热器(gasgasheater,GGH)。SO2原设计排放浓度为168mg/m3,脱硫效率不小于95%。脱硫岛主要由烟气系统、汲取塔系统、石灰石浆液制备系统、废水处理系统、石膏脱水系统、工艺冲洗水系统等组成,如图1所示。图1#1机组脱硫岛运行系统汲取塔设计为喷淋塔式,高31.25m,直径12m,设计液位9.7m,实际运行中的浆池容积为1100m3。设置2台氧化风机,分别向汲取塔供给氧化空气,运行方式为一运一备。塔内浆液循环功能由3台浆液循环泵和3个喷淋层实现,喷淋层每层间隔2m,喷嘴采纳单向单头式,喷淋层上方为单级平板式除雾器。石膏浆液密度仪表安装在汲取塔底部石膏排出泵的出口管道上,运行中依据该仪表密度值的凹凸自动掌握石膏浆液的排放,即密度值低于设定值(一般为1130~1140kg/m3)时,石膏旋流分别器双向安排器转换到汲取塔,浆液在塔内连续循环,汲取SO2;一旦密度超过设定的最大值,双向安排器转换到排出泵出口管道,开头排放石膏,并运至石膏旋流器。石膏浆液脱水系统主要分为2级,一级系统包括2台石膏排浆泵运行和1套石膏旋流器(包含5个旋流子),运行方式分别为一运一备和四运一备;经一级系统脱水后的石膏浆液固含量约50%,再送入公用的二级脱水装置,真空皮带脱水机处理至固含量到达90%左右,贮存于石膏仓库间。脱硫后的净烟气腐蚀性有所降低,但其湿度增大、温度下降;由于系统不设GGH,导致进入净烟道的烟气温度低于硫酸蒸气的露点温度,造成其夹带的少量水蒸气和SO3,在流经烟道和烟囱过程中遇冷形成酸性冷凝水。冷凝水通过烟道及烟囱上安装的冷凝水管回收至#1废水坑,由地坑排水泵输送至脱硫汲取塔。脱硫烟道冷凝水收集及处理路线如图2所示。净烟气原烟气地坑排水泵#1汲取塔#1废水坑出口净烟道冷凝水管烟囱为冷凝水管道图2脱硫烟道冷凝水收集及处理路线2事故及缘由分析2.1事故经过3月1日18:00事故发生时,某电厂脱硫系统处于运行状态,大量浆液从#1汲取塔出口净烟道冷凝水管流出,导致#1废水坑满坑,大量浆液溢流至#1汲取塔四周地面,污染了环境。同时,发觉脱水机脱水困难,产出的石膏含水率为23.6%,超过了验收标准(12%),品质不合格,如图3所示。图3含水率不合格和合格的石膏停机检修时,发觉除雾器叶片堵塞严峻,如图4所示。图4#1汲取塔内除雾器叶片堵塞2.2汲取塔负荷较大导致空塔流速过快从表1数据分析,自2月21日以来,进入锅炉的燃煤平均含硫量在1.4%以上,锅炉平均负荷在80%以上;由于燃煤发热量降低,相对燃用煤量增大,烟气量也随之增大,加上原煤中含硫量较高,造成进入#1汲取塔需要处理的SO2总量增加。因此,需要处理的烟气量和SO2浓度均超过原设计值,汲取塔负荷较高,可能引起空塔流速激增。依据空塔流速计算公式:(1)式中:V为烟气的空塔流速,m/s;Q为塔内原烟气流量,m3/s;A为汲取塔横截面,m2;R为汲取塔横截面半径,m。事故消失时,Q为5.14x108m3/s,R为6m,可计算得知V=4.55m/s,远大于设计时的流速3.8m/s。汲取塔设计流速一般为3.4~4.0m/s,在此区间内比拟适合气液逆流混合。空塔流速太快,造成烟气和脱硫汲取浆液接触反响时间短,消失烟气短路现象,导致脱硫