预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于高斯混合模型的改进的减法聚类算法 Introduction GaussianMixtureModel(GMM)isastatisticalmodelusedinunsupervisedlearningforrepresentingthedistributionofdatainamulti-dimensionalspace.ThemodelassumesthateachdatapointisgeneratedfromamixtureofGaussiandistributionswithunknownparameters,anditestimatestheseparametersusingtheExpectation-Maximization(EM)algorithm.TheGMMmodelhasbeenwidelyusedinimagesegmentation,clustering,andothermachinelearningtasks. Inthispaper,weproposeanimprovedsubtractionclusteringalgorithmbasedontheGMMmodel.Thebasicideaofthesubtractionclusteringalgorithmistoremoveasubsetofdatapointsfromtheoriginaldatasetandclustertheremainingpoints.Theremovedsubsetisthenclusteredseparately,andthetwosetsofclustersaremergedtoformthefinalresult.TheimprovedalgorithmusestheGMMmodeltoclusterthedatapoints,anditintegratesaweightingschemetoadjustthecontributionofeachGaussiancomponenttothefinalclusteringresult. Background Subtractionclusteringisawell-knowntechniqueinclusteranalysis,whichinvolvesdividingtheoriginaldatasetintotwosubsets-areferencesetandasubtractionset.Thereferencesetisusedforclustering,whilethesubtractionsetissubtractedfromthereferencesettoobtainamodifiedsetofdatapoints.Themodifiedsetisthenclusteredagain,andthetwosetsofclustersaremerged.Thisprocessisrepeateduntilthedesirednumberofclustersisobtained. However,theperformanceofthesubtractionclusteringalgorithmdependsonthequalityofthereferencesetandthesubtractionset.Ifthereferencesetcontainsnoiseorirrelevantdata,theresultingclustersmaynotbeaccurate.Moreover,thesubtractionprocessmayremoveimportantinformationfromtheoriginaldataset,leadingtoalossofinformation. GaussianMixtureModel(GMM)isamorepowerfulmodelthanthetraditionalK-meansalgorithm.ItcanmodelthedatadistributionwithaGaussianmixture,whichisusuallymoreflexibleandaccuratethanK-means.Moreover,Gaussianmixturemodelingcanhandlenon-sphericalclustersandcanestimatethecovariancestructureofthedata. TheproposedalgorithmcombinestheadvantagesofGMMclusteringandsubtractionclusteringtoimprovetheperform