预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于遗传算法的网络入侵检测技术研究 Abstract Thenetworksecurityissuehasbecomeoneofthemostimportanttopicsinrecentyears.Inordertoimprovetheaccuracyandefficiencyofthenetworkintrusiondetectionsystem,geneticalgorithmisintroducedinthispaper.Throughthesimulationandtestoftheintrusiondetectionsystembasedongeneticalgorithm,itisfoundthatthealgorithmcanquicklyandaccuratelydetectnetworkattacksandeffectivelyimprovetheefficiencyoftheintrusiondetectionsystem. Keywords:geneticalgorithm,networkintrusiondetection,simulation,efficiency Introduction Withtherapiddevelopmentofinformationtechnology,networksecurityhasbecomeanurgentissuethatneedstobesolvedurgently.Theintrusiondetectionsystem,asanimportantmeansofnetworksecurity,canmonitorandanalyzethebehaviorofnetworkattackersinrealtime,anddetectnetworkattacksinatimelymanner,thusensuringthesecurityofnetworkinformation.However,duetothediversityandcomplexityofnetworkattacks,thetraditionalintrusiondetectionsystemhasdifficultyinachievingrapidandaccuratedetection,andthesystemefficiencyneedstobeimprovedurgently. Geneticalgorithmisanoptimizationmethodbasedontheprincipleofnaturalselectionandgeneticinheritanceinbiology.Itiswidelyusedinvariousfieldssuchasoptimization,planning,designandcontrolduetoitscharacteristicsofglobaloptimization,easyimplementationandstrongadaptability.Inrecentyears,geneticalgorithmhasbeenwidelyusedinnetworksecurityresearch,andithasalsoachievedgoodresultsinnetworkintrusiondetection. Inthispaper,thegeneticalgorithmisintroducedintothenetworkintrusiondetectionsystemtoimprovetheaccuracyandefficiencyoftheintrusiondetectionsystem.Throughthesimulationandtestoftheintrusiondetectionsystembasedongeneticalgorithm,thefeasibilityandeffectivenessofthealgorithmareverified. MainBody 1.Theprincipleofgeneticalgorithm Thegeneticalgorithmisatypeofsearchalgorithmthatisbasedontheprinciplesofnaturalselectionandnaturalevolution.Thealgorithmusesapopulationofpotentialsolutionstosolveproblemsandcontinuouslyoptimizesthesolutionthroughtheselection,crossoverandmutationoftheindi