预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于稀疏重构的阵列信号波达方向估计算法研究 Abstract DirectionofArrival(DOA)estimationisakeytechniqueinarraysignalprocessingandhasbeenwidelyappliedinvariousfields.AmongdifferentDOAestimationtechniques,sparsereconstruction-basedalgorithmshaveachievedgreatsuccessesduetotheirsuperiorperformanceinlowsignal-to-noiseratio(SNR)environmentsandtheabilitytohandlecoherentsources.Inthispaper,wereviewseveralpopularsparsereconstruction-basedalgorithmsforDOAestimation,includingtheFOCUSSalgorithm,theMUSICalgorithm,andthesparseBayesianlearning(SBL)algorithm.WealsoproposeanovelDOAestimationalgorithmbasedonthegroup-sparseBayesianlearning(GSBL)algorithm,whichimprovestherobustnessofSBLalgorithmtothenumberandcoherenceofsourcesbasedonthegroupsparsityinducedbytheuseofmultipleDOAs.Finally,weevaluatetheperformanceofthesealgorithmsusingsimulationexperimentsanddemonstratethesuperiorityoftheproposedalgorithm. I.Introduction DOAestimationreferstofindingoutthearrivaldirectionsofsignalsreceivedbyasensorarrayinthespatialdomain.Ithasbeenwidelyusedinvariousfieldssuchasradar,sonar,wirelesscommunication,andmedicalimaging.ThefundamentalideaofDOAestimationistomakeuseofthespatialdiversityprovidedbyanarraytodifferentiatethesignalsreceivedfromdifferentdirections.Amongdifferentsignalprocessingtechniques,arraysignalprocessinghasbeenwell-developedandhasachievedmanyoutstandingresults. Sparsereconstruction-basedalgorithms,whichidentifytheDOAsbyexploitingthesparsitypropertyofthesignal,haveattractedconsiderableinterestinrecentyears.Thesealgorithmsassumethattheincomingsignalshaveasparserepresentationinsomedomain,andthenestimatetheDOAsbyreconstructingthesparsecoefficients.Sparsereconstruction-basedalgorithmshaveseveraladvantagesoverotherapproaches.Firstly,theycandealwiththeproblemofcoherentsources,whichmeansthatmultiplesourcesarelocatedveryclosetoeachother,leadingtodifficultyinidentifyingthetrueDOAs.Second,theyworkwellinlowSNRenvironmentswheretheconventionalmethodsfailtowork.Finally,theycanhandlemoregeneralsignalmodels,suchasrandomGaussi