预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于特征提取的手势识别技术研究 摘要 手势识别技术已被广泛应用于人机交互、安防等领域,具有很大的应用前景。本文研究了基于特征提取的手势识别技术,主要涉及手势数据采集、预处理、特征提取、分类等方面。实验结果表明,本文提出的手势识别方法能够有效地提高分类精度,为手势识别技术的发展提供了重要的理论支持。 关键词:手势识别、特征提取、分类 Abstract Gesturerecognitiontechnologyhasbeenwidelyusedinhuman-computerinteraction,securityandotherfieldswithgreatapplicationprospects.Thispaperstudiesthegesturerecognitiontechnologybasedonfeatureextraction,mainlyinvolvinggesturedataacquisition,preprocessing,featureextraction,classificationandotheraspects.Theexperimentalresultsshowthatthegesturerecognitionmethodproposedinthispapercaneffectivelyimprovetheclassificationaccuracy,providingimportanttheoreticalsupportforthedevelopmentofgesturerecognitiontechnology. Keywords:gesturerecognition,featureextraction,classification 1.Introduction Handgesturerecognitionisahottopicinthefieldofcomputervisionandhasattractedalotofattentioninrecentyears.Comparedwithtraditionalinteractivedevicessuchasmouseandkeyboard,handgesturerecognitiontechnologycanprovideamorenatural,intuitiveandefficienthuman-computerinteractionmethod.Therefore,ithasbecomeanimportantresearchfieldincomputervisionandartificialintelligence. Gesturerecognitiontechnologycangenerallybedividedintotwocategories:model-basedandfeature-based.Model-basedmethodsuseamathematicalmodeltosimulatethehandanditsmovements,andthenusethemodeltorecognizethegestures.Feature-basedmethods,ontheotherhand,extractfeaturesfromthegesturedataandusethefeaturestorecognizegestures.Comparedwithmodel-basedmethods,feature-basedmethodshaveasimpleralgorithmandfasterprocessingspeed. Inthispaper,wewillmainlystudythefeature-basedhandgesturerecognitiontechnology,whichincludesdataacquisition,preprocessing,featureextractionandclassification. 2.Dataacquisition Dataacquisitionisthefirststepingesturerecognitiontechnology.Itisnecessarytoobtainreliableandhigh-qualitygesturedataforsubsequentprocessing. Dataacquisitioncanbedividedintotwotypes:dataacquisitionthroughhardwaredevicesordataacquisitionthroughcomputervision.Theformerrequirestheuseofspecialhardw