基于Freeman分解的极化SAR图像分类研究.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于Freeman分解的极化SAR图像分类研究.docx
基于Freeman分解的极化SAR图像分类研究引言极化合成孔径雷达(SAR)技术是一种利用微波辐射波对地面目标进行成像和识别的技术。随着SAR技术的发展,极化SAR成为一种非常重要的地球观测技术。极化SAR可以采集目标的多个极化信息,具有观测能力强、图像清晰、容易进行分类等优点,因此在土地利用变化、环境监测、水资源管理等领域广泛应用。但是,极化SAR图像的分析和分类仍然是当前研究的热点和难点问题。Freeman分解是一种基于极化SAR图像的像元振幅和相位信息的分解方法,通过对极化SAR图像进行Freema
基于目标分解和SVM的极化SAR图像分类方法.docx
基于目标分解和SVM的极化SAR图像分类方法摘要:极化合成孔径雷达(PolarimetricSyntheticApertureRadar,PolSAR)技术被广泛用于遥感图像分类、土地利用与覆盖变化分析等领域。针对PolSAR图像分类的问题,本文提出了一种基于目标分解和支持向量机(SupportVectorMachine,SVM)的极化SAR图像分类方法。该方法首先利用极化分解技术提取多个目标极化参数,然后将目标极化参数和实际场景中的各类地物进行匹配,以得到每个地物类别的特征向量。接着采用SVM分类器进行
基于极化SAR图像的非监督分类算法研究的综述报告.docx
基于极化SAR图像的非监督分类算法研究的综述报告极化合成孔径雷达(SAR)图像在遥感领域具有广泛的应用价值和研究意义,其能够提供更加详尽的地表信息,包括土壤类型、植被覆盖、地形变化等。非监督分类算法是一种主流的遥感图像处理方法,它能够自动地将图像分成若干类别,并且不需要人为干预,因此具有很强的实际应用价值。基于极化SAR图像的非监督分类算法主要包括基于聚类方法的分类、基于神经网络的分类以及基于最大熵原理的分类等。其中,基于聚类方法的分类算法是一种基于像素的分类方法,其基本思路是将像素灰度值相近的像素点分为
基于极化SAR图像的非监督分类算法研究的中期报告.docx
基于极化SAR图像的非监督分类算法研究的中期报告中期报告主要内容如下:1.研究背景:极化SAR(SyntheticApertureRadar)技术具有全天候、全天时、高分辨率等优点,是获取地表信息的一种重要手段。极化SAR图像分类是军事、农业、城市规划等领域中广泛应用的问题,而非监督极化SAR图像分类是其中的一个重要研究方向。2.研究目的:本研究旨在探索一种基于非监督聚类方法的极化SAR图像分类算法,通过对极化SAR数据的处理和特征提取,实现地物分类的自动化识别,提高分类精度和效率。3.研究方法:本研究采
基于极化SAR图像的非监督分类算法研究的开题报告.docx
基于极化SAR图像的非监督分类算法研究的开题报告一、研究背景和意义随着卫星遥感技术的不断发展和升级,以及SAR技术的逐渐成熟,SAR遥感图像在农业、城市规划、森林资源管理、海洋环境监测等领域得到了广泛的应用。而极化SAR图像更是在土地利用、森林覆盖度、冰雪覆盖度等方面得到了广泛的关注和应用。然而,针对极化SAR图像的分类算法研究仍然存在一些问题,例如传统的监督分类算法要求大量的训练样本,而手动分类的工作量也非常大;而非监督分类算法则可以在不需要先验知识的情况下自动地对图像进行分类。因此,针对极化SAR图像