预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于Adaline网络的HVDC混合有源直流滤波器控制策略研究 基于Adaline网络的HVDC混合有源直流滤波器控制策略研究 Abstract: Withtherapiddevelopmentofpowerelectronicstechnologyandrenewableenergysources,itiscrucialtodevelopefficientandreliablepowertransmissionsystemsthatcanintegraterenewableenergysourcesandimprovethepowerquality.HVDC(High-VoltageDirectCurrent)transmissiontechnologyhasbeenwidelyusedtoachievethisgoal. However,duetotheincreasingamountofpowerelectronicsdevicessuchasconverters,HVDCtransmissionsystemsgenerateunwantedharmonicsanddistortion,whichcancausepowerqualityproblems.Toovercomethisissue,HVDChybridactivefilters(HAFs)havebeenproposedasasolution.Inthispaper,weproposeacontrolstrategyforHVDCHAFsbasedonAdalineneuralnetworks,whichcanimprovethefilteringperformanceandstabilityofthesystem. Introduction: Withtheincreasingdemandforrenewableenergysourcesandthedevelopmentofpowerelectronicstechnology,itiscrucialtodevelopefficientandreliablepowertransmissionsystemsthatcanintegraterenewableenergysourcesandimprovethepowerquality.High-VoltageDirectCurrent(HVDC)transmissiontechnologyhasbeenwidelyusedinpowertransmissionanddistributionsystemsduetoitsadvantages,suchaslowtransmissionloss,longtransmissiondistance,andhighpowertransmissioncapacity. However,astheamountofpowerelectronicsdevicessuchasconvertersusedinHVDCtransmissionsystemsincreases,thesystemgeneratesunwantedharmonicsanddistortion,whichcancausepowerqualityproblems,suchasvoltageandcurrentharmonics,reactivepower,andelectromagneticinterference.Toovercomethisissue,HVDChybridactivefilters(HAFs)havebeenproposedasasolution. HVDCHAFscaneffectivelysuppressharmoniccurrentsandvoltagedistortionsinthepowersystembyinjectingacompensatingcurrent,whichcanreducetheharmoniccontentofthevoltageandcurrentwaveforms.TheHAFconsistsofapassivefilterandanactivefilter,whichcanoperateineithervoltage-sourceorcurrent-sourcemode. AdalineneuralnetworkswereintroducedbyWidrowandHoffin1960asanextensiontotheperceptronalgorithm.Adalinenetworksusealinearactivationfunctionandcanbeusedforlinearclassificati