预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

图像的稀疏表示及其在图像复原中的应用 Abstract Imagesparsityisacrucialrepresentationtechniquethathasbecomeincreasinglypopularinimagerestorationapplications.Theuseofsparsityinimagerepresentationanditsapplicationsinrestoringdegradedimageshasquicklybecomeoneofthemostactiveareasofresearchinimageprocessing.Thispaperaimstoprovideanoverviewofimagesparsityanditsuseinimagerestoration,exploringtechniquessuchascompressedsensing,totalvariationregularization,andwavelet-basedsparsitymodels.Thepaperincludesananalysisofcurrentadvancementsinimagerestorationbasedonsparsityandadiscussionofthepotentialfuturedevelopmentsinthefield. Introduction Inthemodernworldoftechnology,digitalimagesareallaroundus.Withtheabilitytocapturehigh-qualityimageswithsmartphonesanddigitalcameras,imageshavebecomeanessentialelementofourdailylives.However,imagesareoftendegradedduetovariousfactorssuchaslowlight,noise,ormotionblur.Restoringdegradedimagesisanessentialgoalinimageprocessing,andtherearevarioustechniquesemployedforimagerestoration.Oneofthemostpromisingtechniquesinrecentyearshasbeentheuseofsparsity-basedrepresentations. Inthispaper,weexploretheconceptofimagesparsityanditsapplicationsinimagerestoration.Weexaminehowtheconceptofimagesparsityhasbeenappliedinvariousimagerestorationtechniquesandhowthesetechniqueshavecontributedtothedevelopmentofthefield.Wealsodiscussthepotentialfuturedevelopmentsthatcanbemadeinthefieldofimagerestorationbasedonsparsity. ImageSparsity Sparsityisafundamentalconceptinsignalprocessingthatreferstoanattributeofsignalswhereonlyafewelementscontributesignificantlytothesignal.Asparsesignalcanberepresentedmoreefficientlythanasignalwithmanynonzeroelements.Sparsityoccursinmanynaturalsignals,includingimages.Animagecanbeconsideredsparsewhenithasafewdominantfeaturesorstructures,whichcanbeexploitedtorepresenttheimageefficiently. CompressedSensing Compressedsensing(CS)isatechniquethatutilizessparsitytoreconstructasignalfromareducednumberofmeasurements.Inimagerestoration,CSisusedtorecoveradegradedimagefromasmallnu