(完整版)高斯光束研究.doc
兴朝****45
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
(完整版)高斯光束研究.doc
PAGE\*MERGEFORMAT13高斯光束通过非线性介质的自聚焦现象摘要:随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm),而由于光衍射本身的限制,无法达到实际需求。非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存
(完整版)高斯光束研究.doc
PAGE\*MERGEFORMAT13高斯光束通过非线性介质的自聚焦现象摘要:随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm),而由于光衍射本身的限制,无法达到实际需求。非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存
(完整版)高斯光束研究.doc
PAGE\*MERGEFORMAT13高斯光束通过非线性介质的自聚焦现象摘要:随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm),而由于光衍射本身的限制,无法达到实际需求。非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存
高斯光束研究.doc
PAGE\*MERGEFORMAT13高斯光束通过非线性介质的自聚焦现象摘要:随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm),而由于光衍射本身的限制,无法达到实际需求。非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存
高斯光束研究.docx
高斯光束通过非线性介质的自聚焦现象摘要:随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm),而由于光衍射本身的限制,无法达到实际需求。非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存储、纳米光刻或纳米成像。本文主要研究高斯激光