基于深度学习的遥感图像地物分割研究的任务书.docx
骑着****猪猪
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于深度学习的遥感图像地物分割研究的任务书.docx
基于深度学习的遥感图像地物分割研究的任务书一、研究背景及意义遥感技术是一种应用广泛的技术,是在不接触地物的情况下,通过远距离或对地球上目标进行非破坏性探测来获取信息的一种技术。遥感技术可以为生态环境评估、城市规划、资源管理、灾害监测等领域提供极其重要的信息支持。基于遥感图像数据的地物分割是遥感技术应用中的一项重要任务,其目的是将遥感图像中代表地物的像元分离出来,以进行目标检测、分类和区分等。传统的手动分割方法面对大量复杂的遥感图像数据,分割准确性不高、效率低下、难以适应大规模数据处理等问题,无法满足遥感图
基于深度学习的遥感图像地物分割研究的开题报告.docx
基于深度学习的遥感图像地物分割研究的开题报告一、研究背景遥感图像地物分割是遥感技术领域的热门问题之一。它在城市规划、农业种植、森林资源管理等方面有着广泛的应用。传统的遥感图像地物分割方法往往采用手动确定分类特征和分类规则的方法,存在分类精度不高和依赖人工经验的缺点。深度学习技术的出现为遥感图像地物分割提供了新的思路,并取得了较好的效果。因此,本文旨在基于深度学习方法对遥感图像地物进行分割,提高分割精度和效率。二、研究内容和方法1、研究内容本文将以深度学习技术为基础,通过构建卷积神经网络对遥感图像进行地物分
基于深度学习的遥感图像语义分割方法研究的任务书.docx
基于深度学习的遥感图像语义分割方法研究的任务书任务书一、研究背景随着遥感技术的发展与应用范围的不断扩大,大量的遥感图像数据被采集并传输,且这些数据的数量与复杂度不断增加。因此,如何高效地对这些数据进行处理和分析,成为了当前遥感数据处理中需要研究的热点问题之一。遥感图像语义分析涉及到数据处理、特征提取、目标识别等众多方面,因此研究遥感图像语义分割方法,对于解决遥感图像分析中的实际问题有着重要的意义。近年来,基于深度学习的遥感图像语义分割方法逐渐受到了学术界和工业界的广泛关注。这类方法以卷积神经网络(Conv
基于深度学习的遥感图像的分割方法.pdf
本发明属于图像处理技术领域,具体为基于深度学习的遥感图像的分割方法。本发明方法包括:选取包含若干种地物类别的遥感图像,制作图像分割标签;将大图像裁剪成若干较小的遥感图像,统计每张较小图像中各种类别比例,定义选取规则,保留部分图像,并将其定义为特定类别;利用迁移学习调取大型公开数据集的训练参数,用卷积神经网络训练制作好的分类数据集,训练得到模型参数;对测试图像的所有像素点周围选取多种测试窗口,基于多尺度对像素点进行类别分类;最后去除独立的类别噪声点,将测试结果优化。本发明实用性强,可以将大规模遥感图像快速生
基于深度学习的遥感图像语义分割技术研究.docx
基于深度学习的遥感图像语义分割技术研究基于深度学习的遥感图像语义分割技术研究摘要:随着遥感技术的发展,遥感图像在农业、城市规划、环境监测等领域扮演着重要的角色。然而,遥感图像的高分辨率和复杂性给图像分析与处理带来了巨大的挑战。语义分割是一种重要的遥感图像分析任务,旨在识别和标记图像中的每一个像素的语义类别。本文基于深度学习技术,研究了遥感图像语义分割技术,重点介绍了卷积神经网络(CNN)和全卷积网络(FCN)等常用的深度学习模型,并对比了它们在遥感图像语义分割任务上的性能。1.引言随着卫星遥感技术的不断发