预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.2.2组合(三)一个口袋内装有大小相同的7个白球和1个黑球. ⑴从口袋内取出3个球,共有多少种取法? ⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶从口袋内取出3个球,使其中不含黑球,有多少种取法? 我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.性质2注:1公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数. 2此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.例1计算:一、等分组与不等分组问题练习: (1)今有10件不同奖品,从中选6件分成三份,二份各1件,另一份4件,有多少种分法? (2)今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?例4、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有() (A)种(B)种(C)种(D)种三、混合问题,先“组”后“排”练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.四、分类组合,隔板处理练习: 1、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?课堂练习:5、在如图7x4的方格纸上(每小方格均为正方形) (1)其中有多少个矩形? (2)其中有多少个正方形?Thankyou!