基于Faster R--CNN的活体植株叶片气孔检测方法研究的开题报告.docx
骑着****猪猪
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于Faster R--CNN的活体植株叶片气孔检测方法研究的开题报告.docx
基于FasterR--CNN的活体植株叶片气孔检测方法研究的开题报告一、研究背景叶片是植物最重要的器官之一,也是植物进行光合作用和水分蒸发的主要场所。气孔是叶片表面的小孔,通过控制气孔大小和数量,植物能够调节水分和二氧化碳的交换,以适应环境变化。气孔密度和大小的测量对于研究植物生长、适应环境和疾病防治等方面具有重要的意义。因此,气孔检测成为了植物生理学研究的一个重要领域。目前,在气孔检测方面主要使用的方法是传统的显微镜或扫描仪观察叶片表面形态的方法,但这种方法进行气孔的测量工作需要大量人工干预,操作繁琐、
基于Faster RCNN的视频动作检测的开题报告.docx
基于FasterRCNN的视频动作检测的开题报告一、研究背景与意义随着计算机视觉技术的不断发展,视频动作检测作为其中的一个重要研究方向,在物体跟踪、行为识别、视频理解等领域具有广泛的应用前景。目前,视频动作检测已经被广泛应用于监控、智能交通、体育比赛、健身辅助等领域。基于传统的特征检测和分类方法,有一定的局限性,难以实现高效、精确的视频动作检测。基于深度学习的视频动作检测模型,能够从原始视频数据中提取高阶特征进行行为表征,其精度和效率相对传统方法都有所提升。其中,基于FasterR-CNN模型的视频动作检
基于改进的Faster RCNN的行人检测方法.pdf
本发明公开了基于改进的FasterRCNN的行人检测方法,首先通过ResNet‑50神经网络提取样本图像的特征图,然后将所得特征图输入RPN模型,并修改了RPN模型的边框回归损失函数,生成候选框;最后将特征图和候选框发送到ROIHead模型,得到目标的类别和定位。本发明基于CNN特征,不仅可以处理任意尺度的图像,而且检测精度较高。相比已公开发明专利,本发明所公开的方法并不需要对网络进行特殊的设计,只需修改RPN模型的边框回归损失函数,充分利用了已有的可用数据,采用通用的网络结构仍旧可以达到不错的实验效
基于Faster RCNN改进的少样本目标检测算法研究的开题报告.docx
基于FasterRCNN改进的少样本目标检测算法研究的开题报告一、研究背景目标检测一直是计算机视觉领域的一个重要研究方向。而在实际场景中,由于数据获取的不易和样本分布的复杂性,很多时候只能拥有很少量的样本进行训练。因此,少样本目标检测算法也成为了当前计算机视觉中的热门研究方向之一。传统的深度学习目标检测算法,如FasterRCNN等,需要大量的样本进行训练,在少样本的情况下表现效果往往不理想。因此,如何在少样本的情况下提升目标检测算法的性能便成为了一个重要问题。二、研究目的本研究的目的在于通过对Faste
基于Faster Rcnn的图像文本检测方法及系统.pdf
本发明涉及图像处理技术领域,公开了一种基于FasterRcnn的图像文本检测方法及系统,其方法通过对待检测图像进行预处理,以提高图像的成像质量,并通过目标检测算法对文本信息进行定位,通过定位信息利用OCR识别算法对文本信息进行文本识别,将文本信息转换为字符信息,从而提高图像识别的准确性。