基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法.pptx
快乐****蜜蜂
亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法.pptx
添加副标题目录PART01PART02动态注意力机制的原理深度迁移网络的作用动态注意力深度迁移网络的优势在高炉铁水硅含量预测中的应用PART03高炉铁水硅含量的影响硅含量控制的重要性和难度在线预测的必要性基于深度学习的方法的优势PART04数据预处理和标注模型架构设计训练和优化过程在线预测的实现方式PART05实验设置和数据集描述实验结果分析与其他方法的比较性能评估指标和结论PART06在高炉铁水硅含量控制中的应用价值对工业生产的意义和影响未来研究方向和挑战感谢您的观看
基于深度迁移网络的高炉铁水硅含量在线预测方法及系统.pdf
本发明公开了一种基于深度迁移网络的高炉铁水硅含量在线预测方法及系统,通过利用铁水温度数据无监督的训练去噪自编码机网络,并堆叠多个去噪自编码机网络,从而获得深度去噪自编码机网络,在深度去噪自编码机网络前端嵌入动态注意力机制模块,获得基于动态注意力机制的深度网络以及迁移预训练好的基于动态注意力机制的深度网络,获得铁水硅含量在线预报模型,解决了现有高炉铁水硅含量在线预测精度低的技术问题,通过在深度去噪自编码机网络前端嵌入动态注意力机制模块,能实时的为每个输入样本的过程变量计算动态的注意力分数,使得模型能动态的为
一种高炉铁水硅含量在线预测方法.pdf
本发明提供一种高炉铁水硅含量在线预测方法,根据高炉硅元素传输机理,从高炉作业参数中选择影响铁水硅含量的参数作为预测模型的输入变量,采用皮尔森相关性分析方法确定输入变量与铁水硅含量之间的滞后时间,再对输入变量的样本数据和预测数据进行标准化处理,消除量纲不同对模型预测准确度的影响,采用核极限学习机对下一时刻的铁水硅含量进行预测,采用滑动窗更新的方法对训练集数据进行在线更新,引入遗传算法对核极限学习机模型的关键参数进行优化。本发明提供的在线预测方法适用于对高炉铁水硅含量进行长期在线预测,实际检测结果证明本发明提
基于GA-XGBoost模型的高炉铁水硅含量预测方法.pdf
一种基于GA‑XGBoost模型的高炉铁水硅含量预测方法,包括以下步骤:①采集高炉的历史冶炼数据;②对数据集进行标准化;③将数据划分为不同的簇;④将相关系数大于设定值的特征变量剔除,并将数据划分为训练集和测试集;⑤利用训练集中的数据对GA‑XGBoost模型进行训练;⑥利用测试集中的数据对训练好的GA‑XGBoost模型进行测试;⑦利用测试合格的GA‑XGBoost模型对高炉铁水硅含量预测。本发明在XGBoost算法的基础上利用遗传算法进行优化和改进,并在预测之前通过KMeans++算法将预测数据集分割为
基于二维自注意力增强GRU模型高炉铁水硅含量预测方法.pdf
本发明公开了一种基于二维自注意力增强GRU模型高炉铁水硅含量预测方法,属于工业过程监控、建模和仿真领域。通过从真实的高炉生产数据中获取有效信息建立模型,实现铁水硅含量提前预测,指导后续生产操作。考虑高炉生产过程中各参数变量对产品铁水硅含量的影响大小不同且随时间动态变化,提出在GRU模型特征维度增加自注意力,获取各参数变量的动态权重;同时,考虑系统动态性以及大时滞问题,提出基于因果卷积的时间维度自注意力机制,实现高炉运行参数局部动态特征增强感知,以及运行参数同工艺指标的软对标;本发明方法对于具有大时滞、强动