基于seq2seq模型的非侵入式负荷分解算法.pptx
快乐****蜜蜂
亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于seq2seq模型的非侵入式负荷分解算法.pptx
基于seq2seq模型的非侵入式负荷分解算法目录添加章节标题算法概述算法定义算法原理算法流程算法特点seq2seq模型介绍seq2seq模型定义seq2seq模型结构seq2seq模型训练方法seq2seq模型应用场景非侵入式负荷分解算法实现数据预处理特征提取seq2seq模型训练负荷分解结果输出算法性能评估评估指标实验设置实验结果结果分析算法优缺点分析优点分析缺点分析改进方向应用前景展望THANKYOU
一种基于seq2seq的非侵入式负荷分解方法.pdf
本发明提供了一种基于seq2seq的非侵入式负荷分解方法,包括一下步骤:第一步:设计seq2seq模型;第二步:功能提取;使用Conv1D在一维尺度上对功率序列进行卷积和池化,依靠多个相同权值的卷积核提取功率特征;第三步:(3)基于LSTM的负荷识别;第四步:seq2seqBCL负荷分解。针对目前非侵入式负荷分解方法在低频采样条件下(1Hz及以下)分解准确率较低的问题,发明提出的一种基于卷积神经网络(CNN)与长短期记忆网络(LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seqBase
基于Bi-LSTM算法的非侵入式负荷监测模型.docx
基于Bi-LSTM算法的非侵入式负荷监测模型基于Bi-LSTM算法的非侵入式负荷监测模型摘要:负荷监测是电力系统运行管理中的重要环节,准确的负荷监测可以帮助电力系统提高能源利用效率和运行安全性。然而,传统的负荷监测方法通常需要使用传感器采集实时数据,存在昂贵和影响用户隐私的问题。为了解决这一问题,本论文提出了一种基于Bi-LSTM算法的非侵入式负荷监测模型。该模型利用现有的智能电表数据,通过Bi-LSTM算法进行序列学习和负荷预测,实现了非侵入式的负荷监测。关键词:负荷监测,非侵入式,Bi-LSTM算法,
一种基于深度学习的非侵入式负荷分解模型.pdf
本发明提供一种基于深度学习的非侵入式负荷分解模型,涉及电力系统智能电网领域。该基于深度学习的非侵入式负荷分解模型,包括输入层、中间层和输出层;所述输入层输入滑动窗口所截取的序列样本,所述输出层输出等长的且时间戳相对应的目标设备预测序列,通过输入及输出构建回归模型;所述中间层由神经网络所构成,对输入数据进行线性空间映射,并通过循环迭代更新网络参数,提取序列局部特征的同时,实现了特征序列尺寸和个数的还原;主要区别在于中间层引入了注意力机制,由多个Trans层串联而成,完全避免了CNN和RNN的使用,大大提高了
基于seq2point模型的非侵入式负荷分解方法.pdf
本发明公开了一种基于seq2point模型的非侵入式负荷分解方法,其包括S1、获取待测目标电器设备对应的电表的总功率,并采用预设采样频率对总功率进行重采样得到重采样数据;S2将重采样数据与电表总功率标准数据进行对比,删除重采样数据中的异常片段得到网络的输入数据;S3根据输入数据的初始长度,计算输入数据的最佳序列长度;S4采用已训练的seq2point模型对调整至最佳序列长度的输入数据进行识别,得到待测目标电器设备的功率曲线。