预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共77页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

会计学方差分析由英国统计学家在1923年提出,为纪念Fisher,以F命名,故方差分析又称F检验。三种变异方差分析中的多重比较实例-多重比较方差分析的思路: 将全部观测值的总变异按影响结果的诸因素分解为相应的若干部分变异,构造出反映各部分变异作用的统计量,在此基础上,构建假设检验统计量,以实现对总体参数的推断。单因素方差分析One-Way过程analyze→comparemeans→one-wayANVOAContrasts:线性组合比较。是参数或统计量的线性函数,用于检验均数间的关系,除了比较差异外,还包括线性趋势检验 Contrasts可以表达为:a1u1+a2u2+···+akuk=0;满足a1+a2+···+ak=0。式中ai为线性组合系数,ui为总体均数,k为分类变量的水平数Polynomial(多项式比较):均值趋势的检验有5种多项式:Linear线性、Quadratic二次、Cubic三次、4th四次、5th五次多项式Coefficients:为多项式指定各组均值的系数。因素变量分为几组,输入几个系数,多出的无意义。如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。多项式的系数需要由根据研究的需要输入。如果进行先验对比检验,则应在Coefficients后依次输入系数ci,并确保∑ci=0。应注意系数输入的顺序,它将分别与控制变量的水平值相对应。 例如,当k=4时,即有A、B、C、D4个处理组,如果只将B组和D组比较,则线性组合系数依次为0、-1、0、-1;如果C组与其他3组的平均水平比较,则线性组合系数依次为-1、-1、3、-1,余类推。线性组合系数要按照分类变量水平的顺序依次填入Coefficients框中。均值的多项式比较PostHoc(均数的多重比较选项)方差相等时可选择的比较方法LSD(最小显著差异法):用t检验完成各组均值间的配对比较。在变异和自由度的计算上利用了整个样本信息。对多重比较误差率不进行调整;(此法最敏感) Bonferroni(修正最小显著差异法):用t检验完成各组均值间的配对比较,但通过设置每个检验的误差率来控制整个误差;(应用较多) Sidak(斯达克法):计算t统计量进行多重配对比较,可以调整显著性水平,比Bonferroni法的界限要小 Scheffe(谢弗检验法):对所有可能的组合进行同步进入的配对比较,这些选择可以同时选择若干个,以便比较各种均数比较方法的结果; R-E-G-WF(赖安-艾耶-盖F法):用F检验进行多重比较检验,显示一致性子集表;R-E-G-WQ(赖安-艾耶-盖Q法):正态分布范围进行多重配对比较;显示一致性子集表; S-N-K(SNK法):用studentrange分布进行所有各组均值间的比较;(应用较多) Tukey(图基法):固定极差测验法,用student-range统计量进行所有组间均值的配对比较,将所有配对比较误差率作为实验误差率; Tukey’s-b(图基s-b法):用studentrange分布进行组间均值的配对比较。其精确值为前两种检验相应值的平均值; Duncan(邓肯法):新复极差测验法,指定一系列的的Range值,逐步进行计算比较得出结论; Hochberg’sGT2(霍耶比GT2法):用正态最大系数进行多重比较Gabriet(盖比理法):用正态标准系数进行配对比较,在单元数较大时,这种方法较自由; Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。使用贝耶斯接近; Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照组的均值,默认的对照组是最后一组;选定此方法后,激活下面的ControlCatetory参数框,展开小菜单,选择对照组 Tamhane‘sT2(塔海尼T2法):t检验进行配对比较; Dunnett’sT3(邓尼特T3法):正态分布下的配对比较; Games-Howell(盖门-霍威尔法):各组均值的配对比较,该方法较灵活; Dunnett’C(邓尼特C法):正态分布下的配对比较。常用的多重比较方法的适用性 LSD(LeastsignificantDifference):存在明确对照组,进行验证性研究;两均数间的比较是独立的 T(Tukey)方法:如果事先未计划未计划多重比较,在方差分析得到由统计学意义的F值之后,有需要进行任意两组之间的比较,且各组样本数相同 S(Scheffe)方法:多个均值间的比较,且各组样本数不相同 SNK(Student-Newman-Keul)方法:两两比较次数不多常用的方法有LSD,Scheffe法,SNK法,Turky法,Duncan法和Bonfer