预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共52页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

因式分解教案 因式分解教案15篇在教学工作者开展教学活动前,时常需要用到教案,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?下面是小编收集整理的因式分解教案,仅供参考,希望能够帮助到大家。因式分解教案1第十五章整式的乘除与因式分解根据定义,我们不难得出a+b+c、t-5、3x+5+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.15.1.2整式的加减(3)x-(1-2x+x2)+(-1-x2)(4)(8x-3x2)-5x-2(3x-2x2)四、提高练习:1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的'多项式?2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:试化简:│a│-│a+b│+│c-a│+│b+c│小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P14习题1.3:1(2)、(3)、(6),2。《课堂感悟与探究》因式分解教案2(一)学习目标1、会用因式分解进行简单的多项式除法2、会用因式分解解简单的方程(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。难点:应用因式分解解方程涉及到的较多的'推理过程是本节课的难点。(三)教学过程设计看一看1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:①________________②__________2.应用因式分解解简单的一元二次方程.依据__________,一般步骤:__________做一做1.计算:(1)(-a2b2+16)÷(4-ab);(2)(18x2-12xy+2y2)÷(3x-y).2.解下列方程:(1)3x2+5x=0;(2)9x2=(x-2)2;(3)x2-x+=0.3.完成课后练习题想一想你还有哪些地方不是很懂?请写出来。____________________________________(四)预习检测1.计算:2.先请同学们思考、讨论以下问题:(1)如果A×5=0,那么A的值(2)如果A×0=0,那么A的值(3)如果AB=0,下列结论中哪个正确()①A、B同时都为零,即A=0,且B=0;②A、B中至少有一个为零,即A=0,或B=0;(五)应用探究1.解下列方程2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值(六)拓展提高:解方程:1、(x2+4)2-16x2=02、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?(七)堂堂清练习1.计算2.解下列方程①7x2+2x=0②x2+2x+1=0③x2=(2x-5)2④x2+3x=4x因式分解教案3教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的'乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】(1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解.(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即