预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整版)苏教七年级下册期末解答题压轴数学专题资料真题精选名校答案 一、解答题 1.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F; ①若∠B=90°则∠F=; ②若∠B=a,求∠F的度数(用a表示); (2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值. 2.(生活常识) 射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2. (现象解释) 如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.求证AB∥CD. (尝试探究) 如图3,有两块平面镜OM,ON,且∠MON=55,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,求∠BEC的大小. (深入思考) 如图4,有两块平面镜OM,ON,且∠MONα,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果) 3.如图,在中,与的角平分线交于点. (1)若,则; (2)若,则; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则. 4.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线, (1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小. (2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________, 如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________ (3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数. 5.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 6.已知△ABC的面积是60,请完成下列问题: (1)如图1,若AD是△ABC的BC边上的中线,则△ABD的面积△ACD的面积.(填“>”“<”或“=”) (2)如图2,若CD、BE分别是△ABC的AB、AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y由题意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程组为:,解得,通过解这个方程组可得四边形ADOE的面积为. (3)如图3,AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积,并说明理由. 7.已知,点、分别是、上的点,点在、之间,连接、. (1)如图1,若,求的度数. (2)在(1)的条件下,分别作和的平分线交于点,求的度数. (3)如图2,若点是下方一点,平分,平分,已知.则判断以下两个结论是否正确,并证明你认为正确的结论.①为定值;②为定值. 8.如图1,由线段组成的图形像英文字母,称为“形”. (1)如图1,形中,若,则______; (2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由; (3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系. 9.已知:射线 (1)如图1,的角平分线交射线与点,若,求的度数. (2)如图2,若点在射线上,平分交于点,平分交于点,,求的度数. (3)如图3,若,依次作出的角平分线,的角平分线,的角平分线,的角平分线,其中点,,,,,都在射线上,直接写出的度数.