预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题 1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是() A.98 B.94 C.90 D.86 2.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[]+[]+[]+…+[]=() A.132 B.146 C.161 D.666 3.一列数,,,……,其中=﹣1,=,=,……,=,则×××…×=() A.1 B.-1 C.2017 D.-2017 4.数轴上表示1,的对应点分別为A,B,点B关于点A的对称点为C,则点C所表示的数是() A. B. C. D. 5.数轴上A,B,C,D四点中,两点之间的距离最接近于的是() A.点C和点D B.点B和点C C.点A和点C D.点A和点B 6.若,,则所有可能的值为() A.8 B.8或2 C.8或 D.或 7.如图,A、B、C、D是数轴上的四个点,其中最适合表示的点是() A.点A B.点B C.点C D.点D 8.已知n是正整数,并且n-1<<n,则n的值为() A.7 B.8 C.9 D.10 9.下列说法中,错误的有() ①符号相反的数与为相反数; ②当时,; ③如果,那么; ④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A.0个 B.1个 C.2个 D.3个 10.若的整数部分为a,小数部分为b,则a-b的值为() A. B. C. D. 二、填空题 11.请先在草稿纸上计算下列四个式子的值:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值__________. 12.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______. 13.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____. 14.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________. 15.计算并观察下列算式的结果:,,,,…,则=_______. 16.已知,则的值是__________; 17.若,其中,均为整数,则符合题意的有序数对的组数是______. 18.定义:如果将一个正整数写在每一个正整数的右边,所得到的新的正整数能被整除,则这个正整数称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为,将这个数写在正整数的右边,得到的新的正整数可表示为,请你找出所有的两位数中的“魔术数”是_____________. 19.若表示大于x的最小整数,如,,则下列结论中正确的有______(填写所有正确结论的序号). ①;②;③;④;⑤存在有理数x使成立. 20.在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,)的纵坐标满足,那么称点Q为点P的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x,y)的关联点Q坐标为(-2,3),则点P的坐标为________. 三、解答题 21.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=. (1)F(13)=,F(24)=; (2)如果一个两位正整数t,其个位数字是a,十位数字为,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”; (3)在(2)所得“和谐数”中,求F(t)的最大值. 22.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口