预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学苏教七年级下册期末解答题压轴真题模拟真题 一、解答题 1.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:. (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45). ①求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 2.如图①,平分,⊥,∠B=450,∠C=730. (1)求的度数; (2)如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求的度数; (3)如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由. 3.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 4.如图,在中,与的角平分线交于点. (1)若,则; (2)若,则; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则. 5.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,. (1)=; (2)如图2,点C、D是、角平分线上的两点,且,求的度数; (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若,,且,求n的值. 6.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补. (1)试判断直线AB与直线CD的位置关系,并说明理由; (2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF//GH. (3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值若变化,说明理由. 7.[原题](1)已知直线,点P为平行线AB,CD之间的一点,如图①,若,BE平分,DE平分,则__________. [探究](2)如图②,,当点P在直线AB的上方时.若,和的平分线相交于点,与的平分线相交于点,与的平分线相交于点……以此类推,求的度数. [变式](3)如图③,,的平分线的反向延长线和的补角的平分线相交于点E,试猜想与的数量关系,并说明理由. 8.如图1,点O为直线上一点,过点O作射线,使,将一把直角三角尺的直角顶点放在点O处,一边在射线上,另一边在直线的下方,其中. (1)将图1中的三角尺绕点O顺时针旋转至图2,使一边在的内部,且恰好平分,求的度数; (2)将图1中的三角尺绕点O顺时针旋转至图3,使在的内部,请探究与之间的数量关系,并说明理由. (3)将图1中三角尺绕点O按每秒的速度沿顺时针方向旋转一周,旋转过程中,在第_____秒时,边恰好与射线平行;在第_______秒时,直线恰好平分锐角. 9.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α. (1)如图①,若入射光线EF与反射光线GH平行,则α=________°. (2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由. (3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示) 10.已知:射线 (1)如图1,的角平分线交射线与点,若,求的度数. (2)如图2,若点在射线上,平分交于点,平分交于点,,求的度数. (3)如图3,若,依次作出的角平分线,的角平分线,的角平分线,的角平分线,其中点,,,,,都在射线上,直接写出的度数. 【参考答案】 一、解答题 1.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B