预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于支持向量机性能预测的量子遗传网络任务调度研究的综述报告 Quantumgeneticneuralnetwork(QGNN)isanintelligentmethodusedforsolvingcomplexoptimizationproblemssuchastaskscheduling.Thisapproachincorporatestheprinciplesofquantumgeneticalgorithmsandneuralnetworktechniques.ThegoalofQGNNistoachieveanoptimalsolutionforthetaskschedulingproblem.Theperformanceofthisapproachdependsontheaccuracyoftheperformancepredictionmodelusedtoevaluatethefitnessofeachsolution. Oneofthemethodsusedtoimprovetheaccuracyoftheperformancepredictionmodelisasupportvectormachine(SVM).SVMisamachinelearningalgorithmthatiscapableofpredictingtheperformanceofaschedulingsolutionbasedonhistoricaldata.TheSVMusesalinearornon-linearkernelfunctiontotransformthedataintoahigh-dimensionalspace,wheretheseparationofdifferentclassesbecomeseasy,andtheoptimalhyperplanecanbedrawn.ThisallowstheSVMtoclassifysolutionsintogoodorbadsolutionsbasedontheirpredictedperformance. TheQGNNapproachinvolvesintegratingtheSVMintotheneuralnetwork.Thisenhancestheaccuracyoftheperformancepredictionmodelandimprovesitsabilitytolearnandsolvecomplexoptimizationproblemsefficiently.TheneuralnetworkformsthebasisoftheQGNNapproach.Itconsistsofasetofinterconnectednodesthatsimulatethefunctionsofbiologicalneurons.Theneuralnetworklearnsfromthehistoricaldataandusesthisknowledgetoprovideoutputvaluesthatareusedtoevaluatethefitnessofeachschedulingsolution. TheQGNNapproachemploysaquantum-inspiredencodingmethodtorepresentthetaskschedulingproblemasabinarystring.Thisrepresentationallowstheuseofquantum-inspiredoperatorssuchascrossover,mutation,andselectiontosolvetheproblem.Thecrossoveroperatorcombinestheparentsolutionstogeneratenewoffspringsolutionswithimprovedfitness.Themutationoperatorintroducesrandomchangestothesolutions,whiletheselectionoperatorchoosesthebestsolutionsanddiscardstheworstones. Inconclusion,theQGNNapproachthatisbasedonSVMperformancepredictionmodelsisapromisingmethodforsolvingcomplexoptimizationproblemssuchastaskscheduling.Theaccuracyoftheperformancepredictionmodeliscriticaltot