时域有限差分方法及其在光子晶体中应用的综述报告.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
时域有限差分方法及其在光子晶体中应用的综述报告.docx
时域有限差分方法及其在光子晶体中应用的综述报告时域有限差分方法(FDTD)是一种常用的数值计算方法,用于计算电磁波在各种复杂的介质中的传播,广泛应用于光子晶体的研究中。本文将对FDTD方法及其在光子晶体中的应用进行综述。FDTD方法是一种基于数值解Maxwell方程组的电磁场模拟方法。它的基本思想是在空间中离散化场变量,并在时间上使用离散的时间步长进行模拟。通过这种方法,能够计算出电磁波在各种介质中的传播,包括波导、二维和三维光子晶体等。FDTD方法最早由KaneYee在1966年提出,并随后由Taflo
基于时域有限差分方法的光子晶体电磁特性分析的开题报告.docx
基于时域有限差分方法的光子晶体电磁特性分析的开题报告一、研究背景光子晶体是一种具有周期性结构的材料,它的等效光学性质受到其周期结构的影响而呈现出各种特性。该材料具有很多优异的光学性能,如光子禁带、介质波导、光子晶体腔等,因而在光通信、传感、信息处理等领域有着广泛的应用。近年来,随着计算机技术的发展,计算机模拟方法被广泛应用于光子晶体的电磁特性研究中。在计算机模拟方法中,时域有限差分方法是被广泛应用的一种方法。二、研究内容本文研究的内容为基于时域有限差分方法的光子晶体电磁特性分析。具体内容包括:1.光子晶体
高阶精度时域有限差分方法的研究及其应用的综述报告.docx
高阶精度时域有限差分方法的研究及其应用的综述报告介绍随着近年来计算机技术和数值方法的不断发展,高阶精度时域有限差分(High-orderaccuracyFinite-differenceTime-domainmethod,高阶FDTD方法)成为了一种计算Maxwell方程组的重要数值方法。高阶FDTD方法与传统的FDTD方法相比,在计算效率和模拟精度上有较大改善。在大规模复杂电磁计算和数值仿真中,高阶FDTD方法具有重要意义和广泛应用前景。本文将对高阶FDTD方法的发展现状、理论基础、数值特性及其应用进行
基于时域有限差分算法的光子晶体光分束器的设计.docx
基于时域有限差分算法的光子晶体光分束器的设计光子晶体光分束器是一种用于分离和操纵光束的光器件,由于其优异的能量捕获和光学控制特性,因此被广泛应用于通信、显示和计算机技术等领域。本文旨在讨论基于时域有限差分算法的光子晶体光分束器的设计原理、模拟结果及其实验验证。一、设计原理1.光子晶体及其基本原理光子晶体是一种微结构,由周期性介质构成,可以以禁带结构方式控制光学信号在介质中传播,并使其受到限制和调制,从而实现光控制。光子晶体的基本原理是利用周期性结构调控光场,使光的传播得到禁带限制,形成能隙。在该能隙中,光
高阶时域有限差分方法研究及其在电波传播中的应用的开题报告.docx
高阶时域有限差分方法研究及其在电波传播中的应用的开题报告开题报告题目:高阶时域有限差分方法研究及其在电波传播中的应用一、选题背景时域有限差分(FDTD)方法是计算电磁场、声场、地震波等波动问题的一种重要数值方法,具有计算精度高、应用范围广的特点,已经成为计算电磁场、声场以及地震波传播的重要手段之一。在电磁场计算中,传统FDTD方法只能采用二阶精度的格式,而高阶FDTD方法可以提高计算精度,减小数值耗散和色散误差,提高数值计算稳定性和计算效率。因此研究高阶FDTD方法在电磁场计算中的应用具有重要的理论和实际