预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

导弹水下发射内流场的数值模拟的综述报告 导弹水下发射是一项十分重要的军事技术,随着现代战争的进步,对导弹的水下发射也日趋严格。在导弹水下发射过程中,内流场对导弹的稳定性、速度、精度等方面都有着重要的影响,因此数值模拟成为了分析和优化内流场的有效手段。 导弹水下发射内流场的数值模拟通常采用CFD方法(ComputationalFluidDynamics,计算流体动力学),其本质是基于流体动力学基本方程(Navier-Stokes方程)的数值求解。CFD方法的主要流程包括:建立几何模型、网格划分、边界条件设定、方程离散化、求解和后处理。 在建立几何模型方面,主要可以采用CAD软件进行建模,得到导弹的几何形状。同时,根据一些实验数据和外部限制条件,如水下流场的流速等,可以确定导弹的初速度和初位置等信息。在此基础上,就可以进一步对内流场进行数值模拟。 网格划分是CFD方法中的一个重要步骤,它对求解效果和模拟精度有很大的影响。初始的粗略网格需要经过不断细化,为了保证精度和求解效率,也需要适当控制网格的数目。通常网格可以分为三种类型:结构化网格、非结构化网格和混合网格。对于导弹水下发射内流场的数值模拟,除了采用传统通用CFD软件,也可以使用一些专业软件,如Fluent等。 边界条件是指在计算流场中给出的物理边界和所需要的限制条件。对于导弹水下发射内流场求解,通常采用的边界条件有:入口压力和温度、出口速度和压力、壁面摩擦等。 方程离散化是指通过有限差分或有限体积等方法将偏微分方程转化为代数方程组。这一步骤求解的是离散化后的线性代数方程组,通常采用的方法是隐式求解方法,如迭代解法、高阶精确差分解法等。 求解是CFD方法数值模拟的核心,它根据边界条件和离散化后的方程组来求解数值解。数值解的准确性和求解效率的快慢,主要取决于数值模拟的算法和计算机性能。在CFD方法求解过程中,科学家们通常采用并行计算算法以提高计算效率和精度。 后处理是指对CFD方法数值模拟获得的结果进行分析和评估。数值模拟获得的结果常常表现为数值数据和图像,科学家们通常根据实际需求对这些结果进行分析,并制定相应的措施来改善发射的效果。 总的来说,导弹水下发射内流场的数值模拟是一项需要多方面专家和前沿技术共同探索的研究领域,它涉及力学、数学、物理等多个方面,是一项具有挑战性、难度大的工作。通过CFD方法的数值模拟可以为导弹水下发射的安全性和精度提供可靠的分析和优化手段。