预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

反比例函数的图像与性质 【教学目标】 1.能用描点法画出反比例函数的图象,根据图象数形结合地分析并掌握反比例函数的性质; 2.能利用反比例函数性质分析和解决一些简单的实际问题; 3.体会函数是刻画现实世界中变化规律的重要数学模型,体会变化与对应的思想,渗透数形结合的数学思想。 【教学重难点】 1.重点:画反比例函数的图象,理解反比例函数性质。 2.难点:反比例函数及其图象和性质的理解和掌握。 【教学过程】 一、预习导学(阅读课本P41-42页,完成下列内容) (一)温故知新 1、一次函数y=kx+b(k、b是常数,k≠0)的图象和性质? 2、画函数图象的方法是什么?其一般步骤有哪些?应注意什么? (二)学习新知 探索活动1:在同一直角坐标系中画出函数y=与y=-的图象 探索活动2:反比例函数与的图象特征性质 观察:反比例函数y=与y=-的图象都由组成,并且随着的不断增大(或减小),曲线越来越接近,反比例函数的图象属于。 归纳:反比例函数y=与y=-的图象是。 y=的图象的两分支分别位于第象限,在每个象限内,y值随x值的而; y=-的图象的两分支分别位于第象限,在每个象限内,y值随x值的而。 二、课堂活动 活动1:预习反馈 活动2:典型例题 1、画函数y=与y=-的图象 2、反比例函数性质:反比例函数y=(k是常数,k≠0)的图象是 当k›0时,双曲线的两分支分别位于第象限,在每个象限内,y值随x值的而; 当k‹0时,双曲线的两分支分别位于第象限,在每个象限内,y值随x值的而。 活动3:随堂训练 1、课本43页练习1、2题 2、函数的图象在第________象限,在每一象限内,y随x的增大而_________. 函数的图象在第________象限,在每一象限内,y随x的增大而_________. 函数,当x>0时,图象在第____象限,y随x的增大而_________. 3、若直线y=kx+b经过第一、二、四象限,则函数的图象在() (A)第一、三象限(B)第二、四象限(C)第三、四象限(D)第一、二象限 4、已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是(A)y1>y2>y3(B)y1>y3>y2(C)y2>y1>y3(D)y3>y1>y2 5、已知反比例函数,分别根据下列条件求出字母k的取值范围HYPERLINK"http://www.zxxk.com" (1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大HYPERLINK"http://www.zxxk.com"  活动4:课堂小结 通过这节课的学习,谈谈你的收获。