预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课时作业15动能定理 时间:45分钟 一、单项选择题 1.A、B两物体在光滑水平面上,分别在相同的水平恒力F作用下,由静止开始通过相同的位移l.若A的质量大于B的质量,则在这一过程中() A.A获得动能较大 B.B获得动能较大 C.A、B获得动能一样大 D.无法比较A、B获得动能大小 解析:由动能定理可知恒力F做功W=Fl=eq\f(1,2)mv2-0,因为F、l相同,所以A、B的动能变化相同,C正确. 答案:C 2.物体沿直线运动的v-t关系如图所示,已知在第1s内合力对物体做的功为W,则() A.从第1s末到第3s末合力做功为4W B.从第3s末到第5s末合力做功为-2W C.从第5s末到第7s末合力做功为W D.从第3s末到第4s末合力做功为0.75W 解析:由题图知,第1s末速度、第3s末速度、第7s末速度大小关系v1=v3=v7,由题知W=eq\f(1,2)mveq\o\al(2,1)-0,则由动能定理知第1s末到第3s末合力做功W2=eq\f(1,2)mveq\o\al(2,3)-eq\f(1,2)mveq\o\al(2,1)=0,A错误;第3s末到第5s末合力做功W3=0-eq\f(1,2)mveq\o\al(2,3)=-W,B错误;第5s末到第7s末合力做功W4=eq\f(1,2)mveq\o\al(2,7)-0=W,C正确;第3s末到第4s末合力做功W5=eq\f(1,2)mveq\o\al(2,4)-eq\f(1,2)mveq\o\al(2,3),因v4=eq\f(1,2)v3,所以W5=-0.75W,D错误. 答案:C 3.如图所示,木块A放在木板B的左上端,用恒力F将A拉至B的右端,第1次将B固定在地面上,木块A获得的动能为Ek;第2次可以让B在光滑的地面上自由的滑动,木块A获得的动能为E′k.比较两次木块A获得的动能,则() A.Ek<E′k B.Ek=E′k C.Ek>E′k D.无法确定 解析:第1次合力对木块A做功为W1=(F-Ff)L;第2次,设木板B相对地面的位移为x,则木块A相对地面的位移为(L+x),故合力第二次对木块A做功为W=(F-Ff)(L+x).对比前后两次做功,答案应选A. 答案:A 4.[改编题]如图所示,BC是竖直面内的四分之一圆弧形光滑轨道,下端C与水平直轨道相切.一个小物块从B点正上方R处的A点处由静止释放,从B点刚好进入圆弧形光滑轨道下滑,已知圆弧形轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,取g=10m/s2.小物块在水平面上滑动的最大距离是() A.0.1mB.0.2mC.0.6mD.0.8m 解析:本题考查了多过程中动能定理的应用.设小物块在水平面上滑动的最大距离为x,由动能定理得:mg·2R-μmgx=0,x=eq\f(2R,μ)=0.8m,选项D正确. 答案:D 5.如图所示,一倾角为45°的粗糙斜面与粗糙水平轨道平滑对接,有一质量为m的物体由斜面的A点静止滑下,物体与斜面和地面间的动摩擦因数相同.已知A距离地面的高度为4m,当物体滑至水平地面的C点时速度恰好为零,且BC距离为4m.若将BC水平轨道抬起,与水平面间夹角为30°,其他条件不变,则物体能沿BD斜面上升的最大高度为() A.(8-4eq\r(3))m B.(8-2eq\r(3))m C.eq\f(4,3)m D.8m 解析:由A点到C点,利用动能定理可得mgh-WFf=0,解得μ=0.5,设沿BD斜面上升的最大高度为h′,则由动能定理可得mg(h-h′)-μmgcos45°×eq\r(2)h-μmgcos30°×2h′=0,解得h′=(8-4eq\r(3))m. 答案:A 二、多项选择题 6.某科技创新小组设计制作出一种全自动升降机模型,用电动机通过钢丝绳拉着质量为m的升降机由静止开始匀加速上升,当升降机的速度为v1时,电动机的功率达到最大值P,以后电动机保持该功率不变,直到升降机以最大速度v2匀速上升为止.整个过程中忽略一切阻力和钢丝绳的质量,重力加速度为g,则下列说法正确的是() A.钢丝绳的最大拉力为eq\f(P,v2) B.升降机的最大速度v2=eq\f(P,mg) C.钢丝绳的拉力对升降机所做的功等于升降机克服升降机重力所做的功 D.升降机速度由v1增大至v2的过程中,钢丝绳的拉力不断减小 解析:当升降机的速度为v1前,钢丝绳的拉力最大且为eq\f(P,v1),选项A错误;当钢丝绳的拉力F=mg时升降机的速度达到最大,v2=eq\f(P,F)=eq\f(P,mg),选项B