预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心 用样本的频率分布估计总体分布 第二课时 频率分布直方图的特征: (1) 从频率分布直方图可以清楚的看出数据分布的总体趋势。 (2) 从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。 例1. 作出例1中数据的频率分布直方图 解:(1)先制作频率分布表,然后做直角坐标系,以横轴表示身高,纵轴表示频率/组距 (2)在横轴上标上150.5,153.5‥‥‥180.5表示的点(为方便起见,起始点150.5可适当前移) (3)在上面标出的各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距 一般地:作频率分布直方图的方法为: 把横轴分成若干段,每一线段对应一个组的组距,然后以此线段为底作一矩形,它的高等于该组的频率/组距,这样得到一系列的矩形。 几何意义:每个矩形的面积恰好是该组上的频率。 频率直方图的优点:更直观,形象地反映了样本的分布规律,如在164附近达到峰值。(一般取最高矩形的中点) 频率分布折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起来。简称频率折线图。 优点:它反映了数据的变化趋势。 密度曲线:如果将样本容量取得足够大,分组的组距取的足够小,则相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线。 它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。 〈三〉茎叶图 1.茎叶图的概念:将这些数据有条理的列出来,从中观察数据的分布情况 2.制作方法:将所有两位数的十位数字作为茎,个位数字作为叶,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出。 3.茎叶图的特征: (1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。 (2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。 【例题精析】 〖例1〗:下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm) (1)列出样本频率分布表﹔ (2)一画出频率分布直方图; (3)估计身高小于134cm的人数占总人数的百分比.。 分析:根据样本频率分布表、频率分布直方图的一般步骤解题。 解:(1)样本频率分布表如下: (2)其频率分布直方图如下: (3)由样本频率分布表可知身高小于134cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%. 例2:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1) 第二小组的频率是多少?样本容量是多少? (2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。 分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为: 又因为频率= 所以 (2)由图可估计该学校高一学生的达标率约为 (3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。 【课堂精练】 P57练习1.2. 【课堂小结】 1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。 2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。 【评价设计】 1.P59习题2.21,2,3,4