预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心 机械振动和机械波 知识网络: 周期: 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动无阻尼振动 受力特点 回复力:F=-kx 弹簧振子:F=-kx 单摆: 受迫振动 共振 在介质中 的传播 机械波 形成和传播特点 类型 横波纵波 描述方法 波的图象 波的公式:x=vt 特性 声波,超声波及其应用 波的叠加干涉衍射 多普勒效应 实例 单元切块: 按照考纲的要求,本章内容可以分成两部分,即:机械振动;机械波。其中重点是简谐运动和波的传播的规律。难点是对振动图象和波动图象的理解及应用。 机械振动 教学目标: 1.掌握简谐运动的动力学特征和描述简谐运动的物理量;掌握两种典型的简谐运动模型——弹簧振子和单摆。掌握单摆的周期公式;了解受迫振动、共振及常见的应用 2.理解简谐运动图象的物理意义并会利用简谐运动图象求振动的振幅、周期及任意时刻的位移。 3.会利用振动图象确定振动质点任意时刻的速度、加速度、位移及回复力的方向。 教学重点:简谐运动的特点和规律 教学难点:谐运动的动力学特征、振动图象 教学方法:讲练结合,计算机辅助教学 教学过程: 一、简谐运动的基本概念 1.定义 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F=-kx (1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。 (2)回复力是一种效果力。是振动物体在沿振动方向上所受的合力。 (3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态) (4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。 2.几个重要的物理量间的关系 要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。 (1)由定义知:F∝x,方向相反。 (2)由牛顿第二定律知:F∝a,方向相同。 (3)由以上两条可知:a∝x,方向相反。 (4)v和x、F、a之间的关系最复杂:当v、a同向(即v、F同向,也就是v、x反向)时v一定增大;当v、a反向(即v、F反向,也就是v、x同向)时,v一定减小。 3.从总体上描述简谐运动的物理量 振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期T来描述完成一次全振动所须的时间。 (1)振幅A是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的) (2)周期T是描述振动快慢的物理量。(频率f=1/T也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:(其中m是振动物体的质量,k是回复力系数,即简谐运动的判定式F=-kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。 二、典型的简谐运动 1.弹簧振子 (1)周期,与振幅无关,只由振子质量和弹簧的劲度决定。 (2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。 (3)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。 【例1】有一弹簧振子做简谐运动,则() A.加速度最大时,速度最大B.速度最大时,位移最大 C.位移最大时,回复力最大D.回复力最大时,加速度最大 解析:振子加速度最大时,处在最大位移处,此时振子的速度为零,由F=-kx知道,此时振子所受回复力最大,所以选项A错,C、D对.振子速度最大时,是经过平衡位置时,此时位移为零,所以选项B错.故正确选项为C、D 点评:分析振动过程中各物理量如何变化时,一定要以位移为桥梁理清各物理量间的关系:位移增大时,回复力、加速度、势能均增大,速度、动量、动能均减小;位移减小时,回复力、加速度、势能均减小,速度、动量、动能均增大.各矢量均在其值为零时改变方向,如速度、动量均在最大位移处改变方向,位移、回复力、加速度均在平衡位置改变方向. 【例2】试证明竖直方向的弹簧振子的振动是简谐运动. 解析:如图所示,设振子的平衡位置为O,向下方向为正方向,此时弹簧的形变为,根据胡克定律及平衡条件有 ① 当振子向下偏离平衡位置为时,回复力(即合外力)为 ② 将①代人②得:,可见,重物振动时的受力符合简谐运动的条件. 点评