预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

§12.1随机事件及其概率 考纲解读 考点考纲内容要求浙江省五年高考统计20132014201520162017随机事件及其概率1.了解概率与频率的概念. 2.掌握事件、事件的关系与运算. 3.掌握互斥、对立、独立事件的概念及概率的计算.掌握19(1),7分 12(文),4分9,5分 14,4分04(2) (自选), 5分04(2) (自选), 5分 分析解读1.本节内容与日常生活实际联系密切,是高考应用题命题的来源之一,是常考内容. 2.主要考查等可能事件、互斥事件、对立事件、独立事件的概念、相互关系和概率公式. 3.预计2019年高考试题中,对等可能事件的概率问题的考查必不可少. 五年高考 考点随机事件及其概率 1.(2017山东理,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是() A. B. C. D. 答案C 2.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为() A. B. C. D. 答案D 3.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为. 答案 4.(2016浙江自选,“计数原理与概率”模块,04(2),5分)设袋中共有8个球,其中3个白球、5个红球.从袋中随机取出3个球,求至少有1个白球的概率. 解析从袋中取出3个球,总的取法有=56种, 其中都是红球的取法有=10种. 因此,从袋中取出3个球至少有1个白球的概率是1-=. 5.(2017课标全国Ⅲ文,18,12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574 以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率; (2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率. 解析本题考查概率的计算. (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时, 若最高气温不低于25,则Y=6×450-4×450=900; 若最高气温位于区间[20,25),则Y=6×300+2×(450-300)-4×450=300; 若最高气温低于20,则Y=6×200+2×(450-200)-4×450=-100. 所以,Y的所有可能值为900,300,-100. Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8. 6.(2016课标全国Ⅱ,18,12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数01234≥5保费0.85aa1.25a1.5a1.75a2a 设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数01234≥5概率0.300.150.200.200.100.05 (1)求一续保人本年度的保费高于基本保费的概率; (2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值. 解析(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(3分) (2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15. 又P(AB)=P(B),故P(B|A)====. 因此所求概率为.(7分) (3)记续保人本年度的保费为X元,则X的分布列为 X0.85aa1.25a1.5a1.75a2aP0.300.150.200.200.100.