预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共54页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

会计学6.1干扰的分类波频率范围较广、无规律。如雷电干扰,从几KHz到几百MHz或更高的频域。自然干扰主要来自天空,以电磁感应的方式通过系统的壳体、导线、敏感器件等形成接收电路,造成对系统的干扰。尤其对通讯设备、导航设备有较大影响。 在检测装置中已广泛使用半导体器件,在光线作用下将激发出电子一空穴对,并产生电动势,从而影响检测装置的正常工作和精度。所以,半导体元器件均应封装在不透光的壳体内。对于具有光敏作用的元器件,尤其要注意光的屏蔽问题。 各种电气设备所产生的干扰有电磁场、电火花、电弧焊接、高频加热、可控硅整流等强电系统所造成的干扰。这些干扰主要是通过供电电源对测量装置和微型计算机产生影响。在大功率供电系统中。大电流输电线周围所产生的交变电磁场,对安装在其附近的智能仪器仪表也会产生干扰。此外,地磁场的影响及来自电源的高频干扰也可视为外部干扰。6.1.2内部干扰 内部干扰是指系统内部的各种元器件、信道、负载、电源等引起的各种干扰。下面简要介绍计算机检测系统重常见的信号通道干扰、电源电路干扰和数字电路干扰。 (1)信号通道干扰 计算机检测系统的信号采集、数据处理与执行机构的控制等,都离不开信号通道的构建与优化。在进行实际系统的信道设计时,必须注意其间的干扰问题。信号通道形成的干扰主要有: 1)共模干扰 共模干扰对检测系统的放大电路的干扰较大。是指相对公共地电位为基准点,在系统地两个输入端上同时出现的干扰,即两个输入端和地之间存在地电压。2)静电耦合干扰 静电耦合干扰的形成,是由于电路之间的寄生电容使系统内某一电路信号的变化,从而影响其它电路。只要电路中有尖峰信号和脉冲信号等高频谱的信号存在,就可能存在静电耦合干扰。因此,检测系统中的计算机部分和高频模拟电路部分都是产生静电耦合干扰的直接根源。 3)传导耦合干扰 计算机检测系统中脉冲信号在传输过程中,容易出现延时、变形,并可能接收干扰信号,这些因素均会形成传导耦合干扰。(2)电源干扰 对于电子、电气设备来说,电源干扰是较为普遍的问题。在计算机检测系统的实际应用中,大多数是采用是由工业用电网络供电。工业系统中的某些大设备的启动、停机等,都可能引起电源的过压、欠压、浪涌、下陷及尖峰等,这些也是要加以重视的干扰因素。同时,这些电压噪声均通过电源的内阻,耦合到系统内部的电路,从而对系统造成极大的危害。 (3)数字电路引起的干扰 从量值上看,数字集成电路逻辑门引出的直流电流一般只有mA级。由于一般的较低频率的信号处理电路中对此问题考虑不多,所以容易使人忽略数字电路引起的干扰因素。但是,对于高速采样及信道切换等场合,即当电路处在高速开关状态时,就会形成较大的干扰。 例如,TTL门电路在导通状态下,从直流电源引出5mA左右的电流,截止状态下则为1mA,在5ns的时间内其电流变化为4mA,如果在配电线上具有0.5μH的电感,当这个门电路改变状态时,配电线上产生的噪声电压为:在实际的脉冲数字电路中,对脉冲中包含的频谱应有一个粗略概念。如果脉冲上升时间t为已知量,则可用近似公式求出其等效的最高频率为:6.2干扰的引入6.2.1串模干扰 串模干扰的等效电路如图6.1所示。其中,Us为输入信号,Un为干扰信号。抗串模干扰能力用串模抑制比来表示:6.2.2共模干扰 前面已经介绍信号通道间可能存在共模干扰,其实此类干扰可以归纳为三类,下面对其进一步分析: (1)由被测信号源的特点产生共模干扰 如图6.2所示,具有双端输出的差分放大器和不平衡电桥等不具有对地电位地的形式产生的共模干扰。(2)电磁场干扰引起共模干扰 当高压设备产生的电场同时通过分布电容耦合到无屏蔽的双输入线,而使之具有对地电位时,或者交流大电流设备的磁场通过双输入线的互感在双输入线中感应出相同大小的电动势时,都有可能产生共模电压施加在两个输入端。 如图6.3a所示,若UH很高,通过局部电容CC1,CC2,CC3,CC4耦合到无屏蔽双输入线上的对地电压是UH在相应电容上的分压值U1及U2:当U1=U2时,它们即是共模干扰电压;当U1≠U2时,则既有共模干扰电压,又有差模干扰电压。图6.3b表示大电流导体的电磁场在双输入线中感应产生的干扰电动势E1及E2也具有相似的性质。即当E1=E2时,产生共模干扰;当E1≠E2时,既产生共模干扰又产生差模干扰电动势En=E1-E2。 (3)由不同地电位引起的共模干扰 当被测信号源与检测装置相隔较远,不能实现共同的“大地点”上接地时,由于来自强电设备的大电流流经大地或接地系统导体,使得各点电位不同,并造成两个接地点的电位差Uce,即会产生共模干扰电压,如图6.4所示。图中Re为两个接地点间的等效电阻。6.3干扰的抑制方法通过正确的接地,可消除各电路电流流经公共地线阻抗时所产生的噪声电压;避免磁场和地电位差的影响,