预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

不完备市场中的美式期权定价模型的中期报告 本中期报告旨在介绍并分析在不完备市场中的美式期权定价模型。首先,我们将简述传统的Black-Scholes期权定价模型及其局限性。其次,我们将介绍不完备市场的概念,并探讨如何运用不完备市场的理论来解决Black-Scholes模型无法解决的问题。最后,我们将给出实证研究的一些结论,并讨论未来的研究方向。 传统的Black-Scholes期权定价模型是一种假设市场是完美的、无摩擦、没有交易成本和无风险利率都是稳定且已知的模型。然而,在现实市场中,这些假设并不都是成立的。例如,市场有时会存在摩擦、交易成本会产生、风险利率并不是固定的等等。这些因素使得Black-Scholes模型在一些情况下不能做出准确的定价。例如,当期权到期日比较长或者无法对冲到到期日的期权时,Black-Scholes模型就无法准确估算期权的价格。 在不完备市场中,我们考虑到市场存在不确定性并引入一些随机因素,通过市场的无套利条件来解决定价问题。例如,当资产价格或者利率存在随机变动时,我们可以用风险中性的概念来刻画期权价格,相应的利用无套利条件,我们可以求出期权的价格。 在更细致的研究中,一些学者通过引入追随投资组合(replicatingportfolio)来解决不完备市场中的期权定价问题。追随投资组合指的是一个包含有股票、债券等多种金融资产的组合,它可以复制和替代某一种期权,这样,在不完备市场下,我们可以利用这个追随投资组合的价格和期权的价格来计算期权的价值。 除此之外,一些学者还引入类似期权费用的东西,例如神经网络算法等机器学习技术来解决不完备市场中的期权定价问题。这些方法可以在过去没有涉及的多种情形中得出更精确的结果。 总之,在不完备市场中的美式期权定价模型研究中,我们可以运用不完备市场的理论,通过引入追随投资组合来解决定价问题,或者另辟蹊径引介机器学习等技术来进行精确计算。在未来的研究中,我们可以运用更加先进的技术和方法来探索不完备市场下的期权定价问题。