预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于HSMM的齿轮故障诊断方法研究的中期报告 Abstract: Thismid-termreportpresentsastudyonagearfaultdiagnosismethodbasedonhiddensemi-Markovmodels(HSMM).Theproposedmethodaimstoaccuratelydetectandclassifygearfaultsunderdifferentoperatingconditions.Thepresentedworkincludesareviewofexistinggearfaultdiagnosismethods,followedbythedevelopmentandevaluationoftheproposedHSMM-basedmethod. Introduction: Gearfaultsareacommonprobleminmechanicalsystems,whichcanresultincatastrophicfailuresifnotdetectedandaddressedinatimelymanner.Variousmethodshavebeenproposedforgearfaultdiagnosis,includingvibrationanalysis,acousticsignalprocessing,andwavelettransform.However,thesemethodshavelimitationsinaccuratelydetectingandclassifyinggearfaultsunderdifferentoperatingconditions. Hiddensemi-Markovmodels(HSMM)havebeenwidelyusedinspeechrecognition,imageprocessing,andpatternrecognition.HSMMscaneffectivelymodelcomplextimeseriesdatawithhiddenstatesandvaryingtransitionprobabilities.Inthisstudy,weproposeanHSMM-basedmethodforgearfaultdiagnosistoaddressthelimitationsofexistingmethods. Methodology: Theproposedmethodincludesthreemainsteps:featureextraction,HSMMmodeling,andfaultclassification.First,vibrationsignalsarecollectedusingaccelerometersandpreprocessedtoremovenoiseandinterference.Then,time-domainandfrequency-domainfeaturesareextractedfromthepreprocessedsignalsusingstatistical,spectral,andwaveletanalysis. Next,anHSMMisconstructedwithmultiplehiddenstatesrepresentingdifferentgearfaultconditions.Thetransitionprobabilitiesbetweenthestatesvaryovertime,reflectingthedynamicnatureofgearfaults.TheBaum-Welchalgorithmisusedtoestimatethemodelparametersfromthetrainingdata. Finally,theHSMMisusedtoclassifythefaultconditionsbasedontheobservedvibrationsignals.Amaximumlikelihoodalgorithmisemployedtoidentifythemostprobablehiddenstatesequence,whichisthenmappedtothecorrespondingfaultclass. Results: TheproposedHSMM-basedmethodisevaluatedusingvibrationsignalscollectedfromagearboxtestrigwithartificiallyinducedgearfaults.Theresultsshowthattheproposed