预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于支持向量数据描述的说话人识别研究的综述报告 Abstract Speakerrecognitionhasemergedasavitalandchallengingtaskinthefieldofsignalprocessingandpatternrecognitionduetoitsextensivepracticalapplicationsintheauthenticationandidentificationprocess.Inthispaper,acomprehensivereviewoftherecentliteratureonspeakerrecognitionispresented,especiallyfocusingonthesupportvectordatadescription-basedapproaches.Thepaperdefinesthespeakerrecognitionmethodologies,evaluatestheirperformance,andhighlightstheadvancesinthesupportvectordatadescription-basedapproach. Introduction Speakerrecognitionisabiometricverificationprocessthatidentifiesandverifiesindividualsbasedontheirspeechcharacteristics.Thespeakerrecognitiontechniquescanbedividedintotwocategories:text-dependentandtext-independent.Text-dependenttechniquesrequirethespeakerstouseaspecificfixedtextpattern,whiletext-independenttechniquesusefreelyspokenutterances.Thetext-independenttechniquesaremoresuitableforreal-worldapplicationsbecausetheyoffermoreflexibilityandaccuracy. SupportVectorDataDescription SupportVectorDataDescription(SVDD)isaclassicmethodologyproposedbyTaxandDuinin1999,whichhasbeenextensivelyusedforspeakerrecognitioninrecentyears.SVDDisaone-classclassificationalgorithmthataimstodefineaboundaryaroundthetargetclasswhileminimizingthesupportvectors.TheSVDDalgorithmisdesignedtofindthesmallesthyperspherethatcanenclosethedatavectorsbelongingtoaspecificclassandexcludeallotherdatavectorsfromthehypersphere. SVDD-BasedSpeakerRecognitionApproaches SeveralspeakerrecognitionapproachesbasedonSVDDhavebeenproposedinrecentyears.Theseapproachesdifferinthefeatureextractiontechnique,datapreprocessing,andclassificationschemeused.Oneofthewell-knownmethodsistheKernel-PCA-SVDD(KPCA-SVDD)method,whichuseskernelprincipalcomponentanalysistoextractthefeatures,followedbytheSVDDalgorithmtoclassifytheextractedfeatures.AnotherapproachisusingRadialBasisFunction(RBF)networksandC-SVDDinatwo-stagemanner,whichusesRBFtoextractthefeaturesandSVDDtoclassifythefeatures.AnensembleofSVDDswithdiff