预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

关于Mues反问题以及一类拟正则函数的构造的综述报告 1.Introduction TheMuesinverseproblem,alsoknownastheinverseproblemofmoments,isawell-studiedmathematicalproblemthatarisesinmanyfields,includingsignalprocessing,optics,andcombinatorics.Theprobleminvolvesfindingaprobabilitydistribution,givenitsmoments,whicharetheexpectedvaluesofpowersoftherandomvariable. OneapproachtosolvingtheMuesinverseproblemisthroughtheuseofcertainspecialfunctionscalledquasiregularfunctions.Inthisreport,wewilldiscusstheproblemandtheclassofquasiregularfunctionsusedtosolveit. 2.TheMuesInverseProblem TheMuesinverseproblemcanbedescribedmathematicallyasfollows:Givenasequenceofrealnumbers{Mk},whereMkisthekthmomentofanunknownprobabilitydistributionP(x),findanexplicitexpressionforP(x). Theproblemisill-posed,meaningthatsmallchangesinthesequence{Mk}canleadtolargechangesinP(x).Therefore,itisimportanttoimposeadditionalconstraintsonP(x)toensureitsuniquenessandstability. Onesuchconstraintisthenon-negativityofP(x).Anotherconstraintisthefinitenessofthefirstmoment,whichimpliesthatP(x)isbounded.However,evenwiththeseconstraints,theproblemremainsdifficulttosolve. 3.QuasiregularFunctions QuasiregularfunctionsareaclassofanalyticfunctionsthataredefinedonRnandtakevaluesinRm.Theyaregeneralizationsofregularfunctions,whicharefunctionsthatsatisfytheCauchy-Riemannequations. QuasiregularfunctionshaveinterestingpropertiesthatmakethemusefulforsolvingtheMuesinverseproblem.Inparticular,theyhaveanaturalextensiontothecomplexplane,andtheycanbeusedtoconstructsolutionstopartialdifferentialequations. 4.QuasiregularFunctionsandtheMuesInverseProblem Inrecentyears,researchershavedevelopedmethodsforsolvingtheMuesinverseproblemusingquasiregularfunctions.OnesuchmethodisbasedontheNevanlinna-Pickinterpolationtheorem,whichstatesthatgivenasequenceofcomplexnumbers{zk}andasequenceofdistinctpoints{wk}inthecomplexplane,thereexistsauniquequasiregularfunctionf(z)thatinterpolatesthepoints,i.e.,f(wk)=zk. TheNevanlinna-Pickinterpolationtheoremcanbeusedtoconstructaquasiregularfunct