预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

京翰教育www.zgjhjy.com 2010年普通高等学校招生全国(全国卷II)(数学理) 【教师简评】 按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底. 1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和. 2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分. 3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理. (1)复数 (A)(B)(C)(D) 【答案】A 【命题意图】本试题主要考查复数的运算. 【解析】. (2).函数的反函数是 (B) (C)(D) 【答案】D 【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。 【解析】由原函数解得,即,又; ∴在反函数中,故选D. (3).若变量满足约束条件则的最大值为 (A)1(B)2(C)3(D)4 【答案】C 【命题意图】本试题主要考查简单的线性规划问题. 【解析】可行域是由构成的三角形,可知目标函数过C时最大,最大值为3,故选C. (4).如果等差数列中,,那么 (A)14(B)21(C)28(D)35 【答案】C 【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】 (5)不等式的解集为 (A)(B) (C)(D) 【答案】C 【命题意图】本试题主要考察分式不等式与高次不等式的解法. 【解析】利用数轴穿根法解得-2<x<1或x>3,故选C (6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A)12种(B)18种(C)36种(D)54种 【答案】B 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B. (7)为了得到函数的图像,只需把函数的图像 (A)向左平移个长度单位(B)向右平移个长度单位 (C)向左平移个长度单位(D)向右平移个长度单位 【答案】B 【命题意图】本试题主要考查三角函数图像的平移. 【解析】=,=,所以将的图像向右平移个长度单位得到的图像,故选B. (8)中,点在上,平方.若,,,,则 (A)(B)(C)(D) 【答案】B 【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为平分,由角平分线定理得,所以D为AB的三等分点,且,所以,故选B. (9)已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为 (A)1(B)(C)2(D)3 【答案】C 【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题. 【解析】设底面边长为a,则高所以体积, 设,则,当y取最值时,,解得a=0或a=4时,体积最大,此时,故选C. (10)若曲线在点处的切线与两个坐标围成的三角形的面积为18,则 (A)64(B)32(C)16(D)8 【答案】A 【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】,切线方程是,令,,令,,∴三角形的面积是,解得.故选A. (11)与正方体的三条棱、、所在直线的距离相等的点 (A)有且只有1个(B)有且只有2个 (C)有且只有3个(D)有无数个 【答案】D 【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M,N,Q,连PM,PN,PQ,由三垂线定理可得,PN⊥PM⊥;PQ⊥AB,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D. (12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则 (A)1(B)(C)(D)2 【答案】B 【命题意图】本试题主要考察椭圆的性质与第二定义. 【解析】设直线l为椭圆的有准线,e为离心率,过A,B分别作AA1,BB1垂直于l,A1,B为垂足,过B作BE垂直于AA1与E,由第二定义得,,由,得,∴ 即k=,故选B. 第Ⅱ卷 注意事项: 1.用0.5毫米的黑色字迹签字笔