预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

ForecastingSupplyChainRequirements(2)ClassicTimeSeriesDecompositionClassictimeseriesdecompositionforecastingisbuiltonthephilosophythatahistoricalsalespatterncanbedecomposedintofourcategories:trend,seasonalvariation,cyclicalvariation,andresidual,orrandomvaviation.Classictimeseriesanalysiscombineseachtypeofsalesvariationinthefollowingway: F=T*S*C*R F=demandforecast T=trendlevel S=seasonalindex C=cyclicalindex R=residualindexInpractice,themodelisoftenreducedtoonlytrendandseasonalcomponents. Thisisdonebecauseawell-specifiedmodelhasaresidualindexvalue(R)of1.0andthusdoesnotaffecttheforecast,andbecauseitisdifficultinmanycasestodecomposecyclicalvariationfromrandomvariation. Treatingthecyclicalindex(C)asequalto1.0isbecausethemodelisusuallyupdatedwhennewdatabecomeavailable.ThemathematicalexpressionforalineartrendlineisT=a+bt,thecoefficientsarefoundby ∑Dt(t)-N(D)(t) b=∑t2-Nt2 a=D-btN=thenumberofobservationsusedinthedevelopmentofthetrendline Dt=theactualdemandintimeperiodt D=averagedemandforNtimeperiods t=averageoftoverNtimeperiodsSt=Dt/Tt Ft=(Tt)(St-L)Example: Amanufactureofyoungwomen’sclothinghadtomakepurchasequantitydecisionsandsetproductionandlogisticsschedulesbasedonforecastsofmarketsales.Fiveseasonsoftheyearwerespecifiedforplanningandpromotionalpurposes-summer,trans-season,fall,holiday,andspring.Salesdataforapproximatelytwoandone-halfyearswereobtained(SeeExcel).Aforecastwasneededfortwoseasonsaheadofthecurrentaccountingperiodtoensureadequatepurchasingandproductionleadtime.Whatisforcastfornextholidayseason?由于室内空调产品销售中显著的季节性特征,高压电机公司(Thehigh-voltElectricCompany)在预测季度销售量时面临很大的困难。下表是过去三年个季度销售数据。 1)找到最佳的线性趋势线 2)利用经典的时间序列分解法预测以后四个季度的销售量 去年二年前三年前MultipleregressionanalysisSpecialpredictionproblemsforlogisticsLumpydemandpatternsaredifficulttopredictaccuratelybymathematicalmethods,however,somesuggestionsonhowtotreatthemcanbeoffered: 1lookforobviousreasonsforthelumpinessandusethemtoproducetheforecast.Separatetheforecastingoflumpydemandproductsfromthoseshowingaregularpatternandusefor