预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

证明面面平行的方法 证明面面平行的方法证明面面平行的方法利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,PQ→=xMA→+yMB→(x,y∈R),则①P∈平面MABPQ平面MAB;②P平面MABPQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直于同一平面是错的'21,线面垂直到面面垂直,直线a垂直于平面1,直线a平行与或包含于平面2,所以平面1垂直于平面22,(最白痴的一个)平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面23,通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的这些方法前面都要通过其他方法证明,一步步才能证到这儿,譬如方法1,要先证明线面垂直,所以你也得知道线面垂直的证法有哪些。学立体几何,重要的是空间感,没事多揣摩揣摩比划比划,把每个定理的内容用图形表示出来,并记在脑子中,这样考试的时候才能看到图和题就会知道用什么定理了,熟记并熟练掌握哪些定理的运用才行。还有像这样比较好,证明每个东西都有哪些方法,有几种途径,那么做题的时候想不起来用哪个就可以根据题目条件一步步排除,并选择对的方法,一般老师上课都会总结的。还是好好听课吧~~3判定:平面平行的判定一如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。平面平行的判定二垂直于同一条直线的两个平面平行。性质:平面平行的性质一如果两个平行平面同时与第三个平面相交,那么它们的交线平行。平面平行的性质二如果一条直线在一个平面内,那么与此平面平行的平面与该直线平行。这五个条件?哪五个?判定一中:两条相交的直线是可以确定一个平面的,所以“两条相交直线都平行于另一个平面,那么这两个平面平行。”判定二中。如果一个直线垂直与一个平面,那么直线垂直于平面内的所有直线,则有垂直于同一条直线的两个平面平行。4线线平行证2条线成倍数就行,倍数属于R线面平行找面的法向量,它的法向量与线平行就OK面面平行先找两个面的法向量,只要2个法向量成成倍数就行