证明面面平行的方法.docx
是你****晨呀
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
证明面面平行的方法.docx
证明面面平行的方法证明面面平行的方法证明面面平行的方法利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,PQ→=xMA→+yMB→(x,y∈R),则①P∈平面MABPQ平面MAB;②P平面MABPQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直
证明面面平行的方法.docx
证明面面平行的方法证明面面平行的方法证明面面平行的方法利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,PQ→=xMA→+yMB→(x,y∈R),则①P∈平面MABPQ平面MAB;②P平面MABPQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直
线面平行和面面平行的证明方法(1).doc
空间几何高考试题解答题题型分析题型1利用向量证明直线的位置关系及空间中的角【例1】(2012年山东理)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F-BD-C的余弦值。【例2】(2012年广东理)如图5所示,在四棱锥中,底面为矩形,,点在线段上,。(1)、证明:;(2)、若,求二面角的正切值;【例3】(2012年新课标全国卷理)如图,直三棱柱中,,
线面平行和面面平行的证明方法(1).doc
空间几何高考试题解答题题型分析题型1利用向量证明直线的位置关系及空间中的角【例1】(2012年山东理)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F-BD-C的余弦值。【例2】(2012年广东理)如图5所示,在四棱锥中,底面为矩形,,点在线段上,。(1)、证明:;(2)、若,求二面角的正切值;【例3】(2012年新课标全国卷理)如图,直三棱柱中,,
面面平行的证明.docx
面面平行的证明面面平行的证明面面平行的证明判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。反证:记其中一个平面内的两条相交直线为a,b。假设这两个平面不平行,设交线为l,则a∥l(过平面外一条与平面平行的直线的平面与该平面的交线平行于该直线),b∥l,则a∥b,与a,b相交矛盾,故假设不成立,所以这两个平面平行。2证明:∵平面α∥平面β∴平面α和平面β没有公共点又a在平面α上,b在平面β上∴直线a、b没有公共点又∵α∩γ=a,β∩γ=b∴a在平面γ上,b在平面γ上∴a∥b.3