

光谱角约束的高光谱遥感影像分割活动轮廓方法.pdf
Th****84
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
光谱角约束的高光谱遥感影像分割活动轮廓方法.pdf
本发明公开一种基于光谱角约束的高光谱遥感影像分割活动轮廓方法,采用光谱角作为测度指标度量像元间的光谱相似性,并根据类别可分性原则选出适应分割的最优波段,进而设计了一种基于光谱角约束函数的高光谱遥感影像分割活动轮廓模型,将原本应用于二维影像的分割方法扩展应用到多维高光谱遥感影像。本发明可以使得模型在分割过程中综合利用高光谱遥感影像的空间信息和光谱信息,减少了因空间分辨率不足、目标边缘模糊、异质区域等对分割结果造成的影响。
高光谱遥感影像分类方法综述.docx
高光谱遥感影像分类方法综述高光谱遥感影像分类方法综述摘要高光谱遥感影像分类是利用高光谱遥感数据对地物进行自动识别和分类的过程。其应用广泛,可以用于环境保护、农业、地质勘探等领域。本文对高光谱遥感影像分类的方法进行综述,包括传统的分类方法以及近年来的深度学习方法,并对各方法的优缺点进行了分析和比较。最后,提出了一些潜在的发展方向。1.引言高光谱遥感技术是一种通过获取大量连续的光谱波段信息来描述地物光谱反射特性的遥感技术,相较于传统的遥感影像,高光谱影像具有更高的光谱分辨率。高光谱遥感影像分类是指利用高光谱遥
高光谱遥感影像光谱解混算法研究.docx
高光谱遥感影像光谱解混算法研究摘要:高光谱遥感技术是当前遥感领域的热点之一,在多个领域中都得到了广泛的应用。然而,高光谱遥感影像数据存在着光谱混淆的问题,严重影响了数据的解释和应用,如何解决光谱混淆问题成为高光谱遥感领域的研究重点。本文主要介绍了高光谱遥感影像光谱解混算法的研究进展,并对不同的光谱解混算法进行了比较和分析,以期为高光谱遥感数据的解释和应用提供有益的参考。关键词:高光谱遥感;光谱解混算法;反演模型;PCA;MNF;SMA;AOST;VCA1.引言高光谱遥感技术是在空间分辨率和光谱分辨率上取得
基于波段选择的高光谱遥感影像矢量C-V模型分割方法.pdf
本发明公开一种基于波段选择的高光谱遥感影像矢量C-V模型分割方法,首先根据光谱曲线选择目标与背景对比度较大的波段,并进一步通过波段相关系数,去除其中相关性较大的波段形成新的波段组合,进而根据所确定的波段组合构建高光谱影像矢量矩阵;在此基础上,构造基于该矢量矩阵的矢量C-V分割模型,模型中通过引入基于梯度的边缘引导函数,在保留传统C-V模型基于区域信息进行影像分割的基础上,通过利用影像的边缘细节信息,增强了在异质区域和复杂背景情况下对目标边界的捕捉能力,提高了对高光谱遥感影像的分割精度和速度。
高光谱遥感图像分割算法研究.docx
高光谱遥感图像分割算法研究高光谱遥感图像分割算法研究摘要:随着高光谱遥感技术的发展,高光谱图像的分析与应用已成为遥感领域的热点问题之一。高光谱图像具有较高的光谱分辨率和丰富的光谱信息,可以提供更为详尽的地物表征与区分。然而,高光谱图像的复杂性给其分割带来了很大的挑战。在本论文中,我们将介绍高光谱遥感图像分割问题的背景和意义,并针对其特点,分析和总结了目前常用的高光谱图像分割算法,包括基于像素的分割方法、基于超像素的分割方法和基于图模型的分割方法,并对其优劣进行评价和比较。最后,我们对高光谱遥感图像分割算法