预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

堕二轴承2009年4期 CN41一l148/IHBearing2009,No.4 基于经验模式分解和Wigner 高阶矩谱的轴承故障诊断 王凯,安钢,肖雨 (1.装甲兵工程学院机械工程系,北京100072;2.中北大学机电3-程学院,太原030051) ~:Wigner高阶矩谱由于交叉项的干扰而影响了对信号的时频分析,通过经验模式分解与Wigner高阶矩谱 结合,有效地抑制了Wigner高阶矩谱的交叉项,通过仿真试验进行了验证,并在轴承内圈点蚀故障诊断中得到 了应用。 关键词:滚动轴承;故障诊断;Wigner高阶矩谱;经验模式分解;相关系数 中图分类号:TH133.33;TP274文献标志码:A文章编号:1000—3762(2009)04-0047—04 FaultDiagnosisofRollingBearingsBasedonEMDandWHOS WANGKai,ANGang,XIAOYu (1.TheMechanicalEngineeringDepartment,theAcademyofArmoredForcesEnganeefing,Beijing100072,China; 2.EleetremechanicalEngineeringCollege,NoahUniversityofChina,Taiyuan030051,China) Abstract:Thetime—frequencyanalysi8basedWignerhighermomentspectrum(WHOS)isinterferedbycross—term. Combinedwiththeempiricalmodedecomposition(EMD),thecross—termisefectivelysuppressed.Themethodwas validatedthroughsimulationexperiment,andappliedinfaultdiagnosisofbearinginnerringpittingcorrosion. Keywords:rollingbearing;faultdiagnosis;WHOS;EMD;correlationcoeficient 滚动轴承是旋转机械的关键部件,也是极易统的相位信息,描述系统的非线性性质,适合于分 发生故障的部件,其运行的好坏,直接影响到设备析非平稳信号。但是同Wigner—Ville分布一样, 的运转状态。旋转机械的许多故障都与滚动轴承Wigner高阶矩谱也受到交叉项的干扰,本文通过 有关,据统计,在旋转机械中由于滚动轴承损坏引将经验模式分解与Wigner高阶矩谱相结合,有效 起的故障约占30%[11,因此对滚动轴承的运转状地抑制了Wigner高阶矩谱的交叉项,通过仿真试 态进行监测,及时发现故障隐患,具有十分重要的验进行了验证,并在滚动轴承内圈点蚀故障诊断 意义。中进行了应用。 目前基于振动信号的轴承故障诊断是应用最 1Wigner高阶矩谱 广泛,最有效的方法J。轴承故障信号的突出 特点是非平稳信号,并且这种瞬时频率突变信号1988年Gerr首先提出Wigner高阶矩谱 的持续时间极短,常常被轴承正常振动信号所淹(Wignerhighermomentspectrum,WHOS)的概念。 没,给轴承故障诊断带来困难。信号(t)的k阶Wigner高阶矩谱定义为 Wigner高阶矩谱由于在保留了Wigner—Vile (£,⋯)=⋯’(f—’ 分布良好特性的同时能够抑制高斯噪声,保留系 收稿日期:2008—11—17;修回13期:2008—12—02主t+一南咖一 基金项目:国防科技重点实验室基金项目j2丁)dr](1) (51457050103JB3502)当k=1时,得到Wigner—Ville分布 作者简介:王凯(1976一),男,博士研究生,主要研究方 向为装甲车辆机械系统故障诊断。(tj3=’(£一号)(t+号)ed.r E—mail:waJlgkai76@yahoo.eom.ca。(2) 《轴承)z0o9.No.4 当k:2时得到Wigner双谱 s(t):∑Ci(t)(5) i=1 (f)=ffx’(t一1r,一1)(£+由于分解过程中存在误差,会分解出l't个基本 1 模式分量c和m个伪分量,而ci和ci并不完全相 号r。一1:)(t+争一了1丁)exp(一j2丁)·同,m个伪分量是两者的差值 exp(一j2r2)dT1dT2(3) 当k=3时得到Wigner三谱s(t)=∑Ci()+∑(6) ()=J.,’(一丁)(t—r+)·由于内禀模式函数的均值为零,所以分解后 l2丁3产生的基本模式分量C与原信号s的互协方差函 (t一丁+下2)(t一+3)exp[