预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题 1.按如图所示的程序计算,若开始输入的值为25,则最后输出的y值是() A. B. C.5 D. 2.若实数p,q,m,n在数轴上的对应点的位置如图所示,且满足,则绝对值最小的数是() A.p B.q C.m D.n 3.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为() A.5 B.6 C.7 D.8 4.若,,则所有可能的值为() A.8 B.8或2 C.8或 D.或 5.估算的值应在() A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为.以下四个数中是“水仙花数”的是() A.135 B.220 C.345 D.407 7.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于() A.120 B.125 C.-120 D.-125 8.任何一个正整数n都可以进行这样的分解:n=p×q(p,q都是正整数,且p≤q),如果p×q在n的所有分解中两个因数之差的绝对值最小,我们就称p×q是n的黄金分解,并规定:F(n)=,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=,现给出下列关于F(n)的说法:①F(2)=;②F(24)=;③F(27)=3;④若n是一个完全平方数,则F(n)=1,其中说法正确的个数有() A.1个 B.2个 C.3个 D.4个 9.已知(取的末位数字),(取的末位数字),(取的末位数字),…,则的值为() A.4036 B.4038 C.4042 D.4044 10.数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述正确的是?() A.在A的左边 B.介于O、B之间 C.介于C、O之间 D.介于A、C之间 二、填空题 11.在数轴上,点M,N分别表示数m,n,则点M,N之间的距离为|m﹣n|. (1)若数轴上的点M,N分别对应的数为2﹣和﹣,则M,N间的距离为___,MN中点表示的数是___. (2)已知点A,B,C,D在数轴上分别表示数a,b,c,d,且|a﹣c|=|b﹣c|=|d﹣a|=1(a≠b),则线段BD的长度为___. 12.新定义一种运算,其法则为,则__________ 13.请先在草稿纸上计算下列四个式子的值:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值__________. 14.已知的小数部分是,的小数部分是,则________. 15.按一定规律排列的一列数依次为:,,,,,,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是__________. 16.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点、,则点表示的数为______. 17.如图所示为一个按某种规律排列的数阵: 根据数阵的规律,第7行倒数第二个数是_____. 18.计算并观察下列算式的结果:,,,,…,则=_______. 19.对两数a,b规定一种新运算:,例如:,若不论取何值时,总有,则=______. 20.对任意两个实数a,b定义新运算:a⊕b=,并且定义新运算程序仍然是先做括号内的,那么(⊕2)⊕3=___. 三、解答题 21.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示. 根据以上材料,解决下列问题: (1)的值为______,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”. ①判断这三个数中哪些与“模二相加不变”,并说明理由; ②与“模二相加不变”的两位数有______个 22.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完