高阶微分方程组边值问题多个正解存在性.docx
lj****88
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高阶微分方程组边值问题多个正解存在性.docx
高阶微分方程组边值问题多个正解存在性高阶微分方程组边值问题多个正解存在性(精选9篇),以下是小编为大家准备的高阶微分方程组边值问题多个正解存在性,仅供参考,大家一起来看看吧。篇1:高阶微分方程组边值问题多个正解存在性高阶微分方程组边值问题多个正解存在性利用五个泛函的`不动点定理并赋予f,g一定的增长条件,证明了含有各阶导数的高阶微分方程组至少存在三组对称正解.作者:刘秀君江卫华陈静王斌LIUXiu-junJIANGWei-huaCHENJingWANGBin作者单位:刘秀君,江卫华,LIUXiu-jun,
高阶微分系统边值问题正解的存在性的开题报告.docx
高阶微分系统边值问题正解的存在性的开题报告题目:高阶微分系统边值问题正解的存在性的研究导师:XXX一、研究背景高阶微分系统是一类重要的数学模型,被广泛用于描述许多自然和社会现象,如物理力学、控制系统和生态学等领域。而边值问题是高阶微分系统求解中的重要问题,它通常被形式化为一个微分方程组和一组边界条件,需要求解系统在给定边界条件下的正解。尽管边值问题理论已经发展了很长时间,但是对于高阶微分系统边值问题正解的存在性却仍然是一个重要的研究方向。目前已有一些关于此问题的研究成果,但是还存在许多待解决的问题。因此,
几类高阶微分方程边值问题正解的存在性的任务书.docx
几类高阶微分方程边值问题正解的存在性的任务书任务描述:高阶微分方程边值问题的正解存在性是微积分和微分方程学科中的一个重要问题。本任务要求探究以下几类高阶微分方程边值问题的正解存在性:1.自由边界条件的高阶微分方程边值问题:自由边界条件是指在边界处只给出微分方程的函数值,而没有给出其导数的值或其他辅助条件。本任务要求研究自由边界条件的高阶微分方程边值问题的正解存在性。2.非线性高阶微分方程边值问题:非线性微分方程在科学和工程中具有广泛的应用,因为它们能更好地描述复杂系统中的现象。本任务要求研究非线性高阶微分
两类脉冲微分方程组边值问题正解的存在性.pptx
汇报人:目录PARTONEPARTTWO背景介绍研究意义研究现状研究内容和方法PARTTHREE引言数学模型和问题描述预备知识存在性定理和证明实例和数值模拟PARTFOUR引言数学模型和问题描述预备知识存在性定理和证明实例和数值模拟PARTFIVE研究结论研究展望对未来研究的建议PARTSIXTHANKYOU
时标上几类动力方程边值问题正解的存在性.docx
时标上几类动力方程边值问题正解的存在性在数学物理领域中,动力方程作为一类常见的微分方程形式,其研究的对象通常是各种力学和物理学现象的动态变化规律。动力方程边值问题是指在动力学系统中,对于某些自变量的取值范围,问题的边界条件已知,需要确定该范围内自变量的取值满足方程的解的存在性和唯一性。本文将从时标上几类动力方程边值问题正解的存在性入手,探讨相关理论和应用。1.时标上的常微分方程时标上的常微分方程是指只依赖于一个变量的微分方程。常微分方程的解具有良好的连续性和可导性质,因此在物理学和工程学中被广泛应用。对于