

基于混合区域的活动轮廓模型图像分割方法.pdf
琰琬****买买
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于混合区域的活动轮廓模型图像分割方法.pdf
本发明公开了一种基于混合区域的活动轮廓模型图像分割算法,该方法包括:通过图像增强算法对原始图像进行增强处理;同时使用原始图像的局部灰度拟合项和增强图像的全局灰度拟合项,构建基于混合区域的活动轮廓模型的能量泛函;通过变分法求解构建能量泛函,使用变分水平集的求解框架进行数学计算,即轮廓曲线以隐式水平集的形式表示,然后通过梯度下降流和欧拉一拉格朗日方程将构建的能量泛函转化为一个偏微分方程,并通过迭代逼近的方式求出所述偏微分方程的最优解,进而获得最终的目标边界轮廓。本发明对初始轮廓曲线的位置以及图像的灰度不均匀性
基于混合活动轮廓模型的医学图像分割方法.pdf
本发明公开了一种基于混合活动轮廓模型的医学图像分割方法,结合了图像全局信息和局部信息。全局信息使得模型对于图像具有较强的抗噪性,对图像边缘具有较强的捕捉能力;局部信息使得在异质区域分割更加精确,上述二者结合能够处理背景及其内部结构复杂的图像。实验结果证明了本发明可以分割对比度低、结构复杂的医学图像,而且对于包含噪声、弱边缘和异质区域的图像也能获得很好的分割效果。
一种基于区域混合活动轮廓模型的医学图像分割方法.pdf
一种基于区域混合活动轮廓模型的医学图像分割方法。本发明主要针对医学类的图像给出一种分割方法,其特征是:(1)建立一种基于混合区域的活动轮廓模型,加速图像目标区域的分割和轮廓曲线的拟合;(2)根据图像组成和图像的局部聚类性质而增加的非凸正则化项可以保持区域的几何形状,并防止边缘出现过平滑现象。该发明简单易行,可以准确地分割出医学图像中的目标区域,并且收敛速度更快,准确性好。
基于局部区域活动轮廓模型的图像分割方法研究.docx
基于局部区域活动轮廓模型的图像分割方法研究基于局部区域活动轮廓模型的图像分割方法研究摘要:图像分割在计算机视觉中起着至关重要的作用。本文基于局部区域活动轮廓模型研究了图像分割方法。首先讨论了图像分割的意义和应用领域,并介绍了传统的图像分割方法的不足之处。然后,引入了局部区域活动轮廓模型,并详细介绍了其原理和算法流程。最后,通过实验验证了该方法的有效性,并与其他常用的图像分割方法进行了比较和分析。关键词:图像分割,局部区域活动轮廓模型,算法第一章引言图像分割是计算机视觉领域中的一项重要任务,它将图像分解成具
基于区域活动轮廓模型的图像分割的开题报告.docx
基于区域活动轮廓模型的图像分割的开题报告一、选题背景图像分割是计算机视觉领域中的一个重要研究问题,其在图像处理、目标识别、计算机辅助诊断等领域具有广泛应用。图像分割的目标是将一幅图像划分为若干个具有语义意义的区域,使得每个区域内具有相似的颜色、纹理、边缘等特征。近年来,随着深度学习算法的兴起,基于卷积神经网络的图像分割方法取得了很大进展,但在某些情况下,图像分割的准确度和效率还不能满足实际需求。区域活动轮廓模型(RegionActiveContourModel,RAC)是一种基于变分理论的图像分割方法。它