预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Chapter8:FIRFilterDesignTechniques CHAPTER8FIRFILTERDESIGN1IdealFrequency-SelectiveFilters TECHNIQUES()ω() •LetHdjandhdnbethefrequencyandimpulseresponses, respectively,ofadesired(ideal)filter. •TheyarerelatedbytheFouriertransform: •Thischaptercoversthefollowing. ∞ ()ω()–jωn Hdj=∑hdne(2.1) 1.IdealFrequencySelectiveFilters............................................2n=–∞ 2.DesignofFIRFiltersUsingWindows....................................6π ()1()ωjωnω 3.FrequencySamplingMethod.................................................22hdn=------π∫Hdjed(2.2) 2–π 4.OptimalFIRFilterDesign......................................................26 ()ω •SinceHdjisperiodic,Eq.(2.1)isaFourierseries. 5.DifferentiatorsandHilbertTransformers...............................40 •Therefore,h()nrepresentstheFouriercoefficients. 6.DesignofFIRfiltersusingMatlab.........................................47d A.Bouzerdoum Page2of52 Chapter8:FIRFilterDesignTechniquesChapter8:FIRFilterDesignTechniques ◆Ideal-LowPassFilter◆IdealFilterCharacteristics ,ωω≤ ⎧1c H()jω=⎨H()jωH()jω d,ω<ωπ≤dd ⎩0c ω11 cjωn–jωnω 1ec–ecsincnωω h()n===------∫ejωndω-------------------------------------------------- d2πj2πnπnπωωππωωπ ω–––– –ccccc IdealLowpassIdealHighpass ()ω 1Hdj ω ()ωH()jω πωωπHdjd ––cc 1 ()–ππ hdnωω ωωωωπωωωωπ –2–112––2–112 n 0IdealBandpassIdealBandstop A.BouzerdoumA.Bouzerdoum Page3of52Page4of52 Chapter8:FIRFilterDesignTechniquesChapter8:FIRFilterDesignTechniques ◆CharacteristicsofIdealFilters2DesignofFIRFiltersUsingWindows •Thesimplestwaytoobtainalinear-phaseFIRfilteristotruncatethe Filter FrequencyResponseImpulseResponseh()0 Typedimpulseresponseofanidealfilter. N ⎧1,ωω≤ωω1 Lowcsincnc()ω≈()ω()–jωn H()jω=⎨h()n=-----------------------HdjHj=∑hdne(2.3) passd⎩0,ω<ωπ≤dπnπ cnN=–1 ,ω≤≤ωπ()≤≤ ⎧1csinωnω⎧hdn,if–N1nN1 HighH()jω=⎨()δ()cchn()⎨(2.4) passd,ωω<hdn=1n–-----------------π–------π= ⎩0cn⎩0,otherwise ,ω≤≤ωωωωωω()()⋅() Band⎧112sin2n–sin1n2–hn=hdnwn(2.5) H()jω=⎨h()n=----------------------------------------------