一种基于非下采样轮廓波DCGAN的极化SAR图像分类方法.pdf
霞英****娘子
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于非下采样轮廓波DCGAN的极化SAR图像分类方法.pdf
本发明公开了一种基于非下采样轮廓波DCGAN的极化SAR图像分类方法,输入待分类的极化SAR图像进行Pauli分解;用归一化后的数据集取32×32的块构成基于图像块的数据集;构造无标签训练数据集、有标签训练数据集和测试数据集,利用SLIC超像素算法对Pauli分解后的伪彩图划分超像素块,构造非下采样轮廓波DCGAN,用无标签训练数据集对训练网络模型非下采样轮廓波DCGAN进行训练;再用有标签训练数据集输入判别分类网络模型训练softmax分类器,再微调整个判别分类网络的参数;利用训练好的判别分类网络模型对
非下采样轮廓波卷积神经网络的极化SAR图像分类方法.pdf
本发明公开了一种基于非下采样轮廓波卷积神经网络的极化SAR图像分类方法,主要解决现有技术难以避免相干斑噪声的影响及分类精度低的问题,其实现步骤是:对待分类的极化SAR图像进行去噪,对去噪得到的极化散射矩阵S进行Pauli分解;将Pauli分解得到的图像特征组合成特征矩阵F,并对其归一化,记作F1;对每个像素点取F1周围的22×22块,得到基于块的特征矩阵F2;从F2中选取训练数据集和测试数据集;构造非下采样轮廓波卷积神经网络,对训练数据集进行训练;利用训练好的非下采样轮廓波卷积神经网络对测试数据集进行分类
基于非下采样轮廓波全卷积网络的高分辨SAR图像分类方法.pdf
一种基于非下采样轮廓波全卷积网络的高分辨SAR图像分类方法,包括输入待分类的高分辨SAR图像,对图像中的各像素点进行多层非下采样轮廓波变换,获取各像素点的低频系数和高频系数;将低频系数和高频系数选择并融合,构成基于像素点的特征矩阵F;将特征矩阵F中的元素值归一化,得到归一化特征矩阵F1;将归一化特征矩阵F1切块,得到特征块矩阵F2并作为样本数据;构造训练数据集特征矩阵W1和测试数据集特征矩阵W2;构造基于全卷积神经网络的分类模型;训练分类模型;利用训练好的模型对测试数据集T分类,得到测试数据集T中每个像素
基于非下采样轮廓波变换的遥感图像道路增强方法.pdf
本发明公开了一种遥感图像道路增强的方法,主要解决现有技术增强后的道路失真大,道路目标检测不准确的问题。其实现过程是:首先对遥感图像进行3层非下采样的轮廓波变换,其中每层变换的方向个数由低到高排列分别分为4,4,8,再根据各层变换的方向个数,设定相应的结构元素;然后对变换后的系数采用与之相近方向的结构元素进行方向性增强;最后计算图像中每个像素点的方向,得到图像的方向矩阵,通过方向矩阵对增强系数中的噪声和背景进行处理,再对处理后的增强系数进行轮廓波反变换,得到图像的增强结果。本发明能在增强道路的同时,很好的保
基于非下采样轮廓波变换的遥感图像道路提取方法.pdf
本发明公开了一种从遥感图像中提取道路的方法,属于图像处理技术领域,主要解决现有技术对道路检测定位不够准确、虚假目标多且连续性较差的问题。具体实现过程是:首先,对输入图像进行包括自适应直方图均衡化和Frost去噪的预处理;然后对其进行3层非下采样轮廓波变换,每层分解为8个方向,提取第1层和第2层各方向子带的模极大值作为道路的线性特征向量;再采用模糊C均值聚类算法对得到的特征向量进行聚类,获得道路的初始提取结果;最后,对初始提取进行非极大值抑制以及基于空间关系的道路后处理,得到最终的道路提取结果。