预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高维数据下的几类因果推断算法研究的开题报告 Abstract Causalinferenceisimportantinmanyareassuchassocialscienceandmedicine,anditseekstoidentifythecausalrelationshipsbetweendifferentvariables.Inrecentyears,withtherapiddevelopmentofdatascienceandmachinelearningtechniques,manycausalinferencealgorithmshavebeenproposed.However,thesealgorithmsmaynotbeeffectivewhendealingwithhigh-dimensionaldata,whichoftencontainsmanyirrelevantandnoisyfeatures.Inthisproject,wewillreviewseveralstate-of-the-artcausalinferencealgorithmsforhigh-dimensionaldata,andinvestigatetheirstrengthsandweaknesses.Wewillalsoproposenewalgorithmsorimprovementstoexistingalgorithmstoaddressthechallengesinhigh-dimensionaldata. Introduction Causalinferenceistheprocessofdeterminingthecausalrelationshipsbetweendifferentvariables.Forexample,inmedicalresearch,wemaybeinterestedindeterminingwhetheracertainmedicationcausesareductioninbloodpressure.Insocialscience,wemaywanttostudytheeffectofeducationonincome.Causalinferenceisimportantbecauseitallowsustomakeinformeddecisionsandtakenecessaryactionsbasedonthecausalrelationshipsbetweenvariables. Inrecentyears,manycausalinferencealgorithmshavebeenproposed,suchaspropensityscorematching,instrumentalvariableanalysis,andregressiondiscontinuitydesign.However,thesealgorithmsmaynotbeeffectivewhendealingwithhigh-dimensionaldata,whichoftencontainsmanyirrelevantandnoisyfeatures.High-dimensionaldatareferstodatasetswithalargenumberoffeaturesrelativetothenumberofobservations.Insuchdatasets,traditionalstatisticalmethodssuchaslinearregressionmaysufferfromthecurseofdimensionality,whichleadstooverfittingandpoorgeneralizationperformance.Therefore,newalgorithmsorimprovementstoexistingalgorithmsareneededtoaddressthechallengesinhigh-dimensionaldata. Objectives Theobjectivesofthisprojectare: 1.Toreviewseveralstate-of-the-artcausalinferencealgorithmsforhigh-dimensionaldata,includingbutnotlimitedtothefollowing: *High-DimensionalPropensityScore(HDPS)Matching *High-DimensionalInstrumentalVariable(HDIV)Analysis *SparseRegres