一种基于深度学习的手势识别方法.pdf
冬易****娘子
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于深度学习的手势识别方法.pdf
本发明提供了一种基于深度学习的手势识别方法,其特征在于,包括以下步骤:利用手势训练集和测试集对二值化卷积神经网络进行训练;利用肤色反映的颜色信息,基于颜色信息对预处理后的原始图像进行分割,提取手势轮廓;利用训练后的二值化卷积神经网络判断手势轮廓对应的手势指令;定位一系列手势轮廓对应的动态手势起、止点,并使用TLD算法追踪手势轨迹,追踪过程中的偏差使用Haar分类器进行修正,再使用HMM算法识别动态手势。本发明提供的方法可以解决传统的手势识别中一般存在着的识别精度不高、稳定性差、实时性较差、手势功能单一等问
基于深度学习的动态手势识别方法.docx
基于深度学习的动态手势识别方法基于深度学习的动态手势识别方法摘要:手势识别是一种重要的人机交互技术,在许多应用场景中起到了关键作用。随着深度学习技术的发展和普及,基于深度学习的动态手势识别方法成为当前研究的热点。本论文主要介绍了基于深度学习的动态手势识别的原理和方法,并对目前的研究进行了综述。实验结果表明,基于深度学习的动态手势识别方法具有较高的识别准确率和鲁棒性,具有广泛的应用前景。1.引言手势是人与人之间重要的非语言交流方式,因此手势识别技术在人机交互、虚拟现实、游戏等领域都有广泛的应用。动态手势识别
基于特征融合与深度学习的手势识别方法研究.docx
基于特征融合与深度学习的手势识别方法研究摘要:随着人机交互技术的快速发展,手势识别作为一种自然、直观、非接触式的交互方式,受到了广泛关注。然而,由于手势的多样性和复杂性,手势识别仍然面临着困难。因此,本论文提出了一种基于特征融合与深度学习的手势识别方法,通过将传统的特征提取与深度学习相结合,提高了手势识别的准确率和鲁棒性。首先,利用传统的特征提取方法提取手势的空间特征和时间特征。然后,通过特征融合的方法将两类特征进行整合。最后,利用深度学习方法进行手势识别的训练和测试。实验结果表明,本方法相比传统的手势识
一种基于深度信息的手势识别方法.pdf
本发明涉及一种基于深度信息的手势识别方法。现有方法在实际应用环境和用户体验上均存在着一定的问题。本发明首先获取实时的深度图像,背景建模后获得背景图像,利用背景图像和当前图像作差分,检测出前景区域。其次对建立的背景图像进行更新,并以提取出独立的人体区域。然后在每个独立的人体区域上检测出手部区域、轮廓信息;获取手部跟踪的运动轨迹。最后利用隐马尔科夫模型对运动轨迹进行建模,识别出手势。本发明能够适应肤色变化的干扰,在室内环境下不受距离、光照、遮挡、运动等因素的影响,算法计算量小,实时性高。
基于深度学习的手势图像分割与识别方法以及装置.pdf
本发明提供了一种基于深度学习的手势图像分割与识别方法以及装置。本发明中方法首先预处理手势图像,使其图像的大小尺寸固定。其次,在复杂背景中通过密集分割网络密集的连接不同空洞率的空洞卷积获取在不同视野上的手势多尺度信息,以提高特征表述的精确性。另外,为了融合不同层级上的细节和空间位置信息,提升整体网络的分割性能,密集分割网络采用编码器‑解码器结构,去掉了冗余的背景信息,实现了手势图像的精准分割。最后将仅仅保留手势图像的掩膜图输入到手势识别网络中,采用改进算法进行识别。通过本发明可以提高手势图像的分割性能,从而