深度模型训练方法及装置、电子设备及存储介质.pdf
雨巷****莺莺
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
深度估计模型的训练方法、装置、电子设备及存储介质.pdf
本公开关于一种深度估计模型的训练方法、装置、电子设备及存储介质,以至少解决卷积神经网络对视频图像深度估计的稳定性不高的问题。该方法包括:将n个样本图像以及与n个样本图像一一对应的n个模拟图像分别输入预设深度估计模型,得到分别对应n个样本图像的深度预测结果和n个模拟图像的深度预测结果;n个样本图像和n个模拟图像标注有像素点深度值;根据每个样本图像的像素点深度值和每个样本图像的深度预测结果获得n个第一损失;根据每个样本图像的深度预测结果和与每个样本图像对应的模拟图像的深度预测结果获得n个第二损失;根据n个第一
深度模型训练方法及装置、电子设备及存储介质.pdf
本发明实施例公开了一种深度模型训练方法及装置、电子设备及存储介质。所述深度学习模型训练方法,包括:获取第一模型输出的第n+1第一标注信息,所述第一模型已经过n轮训练;以及,获取第二模型输出的第n+1第二标注信息,所述第二模型已经过n轮训练;n为大于1的整数;基于所述训练数据及所述第n+1第一标注信息,生成第二模型的第n+1训练集,并基于所述训练数据及所述第n+1第二标注信息,生成所述第一模型的第n+1训练集;将所述第二模型的第n+1训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第一模型
深度模型训练方法及装置、电子设备及存储介质.pdf
本发明实施例公开了一种深度模型训练方法及装置、电子设备及存储介质。所述深度模型训练方法包括:获取待训练模型输出的第n+1标注信息,所述待训练模型经过n次训练;获取待训练模型输出的第n+1标注信息n为大于或等于1的整数;基于所述训练数据及所述第n+1标注信息生成第n+1训练样本;将所述第n+1训练样本对所述待训练模型进行第n+1轮训练。
模型训练方法、装置、电子设备及存储介质.pdf
本公开提供了一种模型训练方法、装置、电子设备及存储介质,该模型训练方法包括:通过宿主机进程获取训练数据,并针对采用主从结构的训练节点集群对训练数据进行划分得到多个子训练数据;训练节点集群包括主节点和多个工作节点,宿主机进程运行于非可信执行环境内,训练节点集群运行于可信执行环境内;通过宿主机进程对每个子训练数据进行加密,并将加密后的子训练数据存储至宿主机进程的共享内存中;控制主节点及各个工作节点分别根据对应的数据存储地址从共享内存中获取对应的加密的子训练数据,并使用各自对应的解密的子训练数据分别对预设模型进
模型训练方法、装置、电子设备及存储介质.pdf
本申请提供一种模型训练方法、装置、电子设备及存储介质,涉及信息处理技术领域,用于提高神经网络模型预测多个出行指标的预测准确度。该方法包括:获取目标用户的样本数据;将样本数据输入预设神经网络模型中,预测目标用户在第二时间段的多个出行指标中每个出行指标的预测准确度;第二时间段为第一时间段后的时间段;根据每个出行指标的预测准确度,以及每个出行指标的预测准确度对应的第一权重值,确定预设神经网络模型的预测准确度;根据预设神经网络模型的预测准确度,确定用户出行预测模型。这样,依据每个出行指标的预测准确度和权重值调整神