预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学弦切角定理的证明方法 高中数学弦切角定理的证明方法 弦切角是几何中的定理,那它们是怎么被证明的呢?证明的方法是怎样的呢?下面就是百分网小编给大家整理的弦切角定理证明方法内容,希望大家喜欢。 弦切角定理证明方法一 1)连OC、OA,则有OC⊥CD于点C。得OC‖AD,知∠OCA=∠CAD。 而∠OCA=∠OAC,得∠CAD=∠OAC。进而有∠OAC=∠BAC。 由此可知,0A与AB重合,即AB为⊙O的直径。 (2)连接BC,且作CE⊥AB于点E。立即可得△ABC为Rt△,且∠ACB=Rt∠。 由射影定理有AC²=AE*AB。又∠CAD=∠CAE,AC公用,∠CDA=∠CEA,得△CEA≌△CDA,有AD=AE,所以,AC²=AB*AD。 第一题重新证明如下: 首先证明弦切角定理,即有∠ACD=∠CBA。 连接OA、OC、BC,则有 ∠ACD+∠ACO=90° =(1/2)(∠ACO+∠CAO+∠AOC) =(1/2)(2∠ACO+∠AOC) =∠ACO+(1/2)∠AOC, 所以∠ACD=(1/2)∠AOC, 而∠CBA=(1/2)∠AOC(同弧上的圆周角等于圆心角的一半), 得∠ACD=∠CBA。 另外,∠ACD+∠CAD=90°,∠CAD=∠CAB, 所以有∠CAB+∠CBA=90°,得∠BCA=90°,进而AB为⊙O的直径。 弦切角定理证明方法二 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半) ∵∠BOC=2∠CAB(圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角) 证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的.一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. 过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB ∴(弦切角定理) 弦切角定理证明方法三 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长. 解:连结OA,OB. ∵在Rt△ABC中,∠C=90 ∴∠BAC=30° ∴BC=1/2a(RT△中30°角所对边等于斜边的一半) 例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF∥BC. 证明:连DF. AD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D∠FDC=∠DAC ∠EFD=∠FDC EF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C, 求证:AC平分∠MCD,BC平分∠NCD. 证明:∵AB是⊙O直径 ∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B, ∵MN切⊙O于C ∴∠MCA=∠B, ∴&